π⁰ Transverse Single-Spin Asymmetries (A_N)

at $\eta = 4.1$ in p+p Collisions at $\sqrt{s} = 200 \text{ GeV}$

Jim Drachenberg

OUTLINE

- Background
- FPD and STAR
- Run 8 Asymmetries
- Conclusions

Setting the Stage: pQCD

Early pQCD predictions indicated transverse single-spin asymmetries (A_N) for high transverse momentum particles from p-p collisions should be small

$$A_N \sim \frac{\alpha_s \times m_q}{p_T}$$

Setting the Stage: E704

 10^{-1} for E704 kinematics are large 0.2 0.4 compared to pQCD predictions Eur. Phys. Journ. C36, 371 (2004)

0.6

Setting the Stage: STAR

Explanations: Sivers Effect

The "Sivers effect" describes the asymmetry as arising from a correlation between the incident proton polarization and parton transverse momentum

Sivers calculations (as well as twist-3) roughly fit the data in terms of x_F

Sivers effect would give an indirect signature for parton orbital motion

Explanations: Sivers Effect

HOWEVER:

The Sivers calculation expects a *fall-off* with p_T at fixed x_F .

This is **NOT** indicated in the data

Explanations: Collins Effect

The "Collins effect" describes the asymmetry as arising from spindependent fragmentation of transversely polarized scattered quarks

Initially, it was thought the Collins effect would be **suppressed** in the forward region:

"Surprisingly, the intrinsic partonic motion...produces a strong suppression of the transverse single spin asymmetry arising from the Collins mechanism."

[M. Anselmino et al., Phys. Rev. D 71, 014002 (2005)]

Explanations: Collins Effect

HOWEVER:

Recent investigation revealed a sign error in the previous limits. It now appears that the Collins effect could indeed explain the full behavior.

Collins effect would provide a means to constrain the quark transversity.

Explanations: Collins Effect

HOWEVER:

Recent investigation revealed a sign error in the previous limits. It now appears that the Collins effect could indeed explain the full behavior.

Determining the underlying origin(s) of the large A_N would provide crucial information about proton spin-structure

Lower-p_T at High-x_F?

Forward Pion Detector (FPD) and STAR

For Run-8, FPD was placed in the "near position"

Run-8 $\eta \approx$ -4.1 while Run-6 $\eta \approx$ -3.7

Run-8 FPD Event Cuts

- Transversely polarized p+p runs at $\sqrt{s} = 200 \text{ GeV}$ (~0.5 pb⁻¹ with P ~ 0.44)
- Hardware trigger: Summed ADC for each module ≥ 125 (nominally 25 GeV)
- Software cuts:
 - 2γ events
 - $z_{\gamma\gamma} < 0.7$
 - $-0.07 \text{ GeV} < m_{\gamma\gamma} < 0.3 \text{ GeV}$
 - $E_{total} > 25 \text{ GeV}$
 - Fiducial volume cut: 0.5 cell from edge of detector
- Number of events passing east and west BBC min-bias conditions (software trigger): $EN \sim 0.97 \text{ M}$; $ES \sim 2.11 \text{ M}$

Run 8 Energy Calibration

- Channel-by-channel and run-byrun raw ADC's are analyzed for pedestal shift
- Reconstruct π^0 , channel-bychannel, correcting to known mass value until convergence for all channels
- Energy-dependent corrections
- Run-dependent corrections

Gain Difference

Due to gain difference between EN & ES, there is large acceptance asymmetry near threshold.

Gain Difference

Due to gain difference between EN & ES, there is large acceptance asymmetry near threshold.

We focus on summed energy > 35 GeV

Systematics for A_N

• Consider effects of low statistics far from the beam on gain calibration

- Consider effects of yields under the π^0 mass peak by implementing tighter mass cut
- Total systematic combines these effects in quadrature

Run 8 Asymmetries

$$A_N = \frac{1}{P} \times \frac{\sqrt{N_{\uparrow} \times S_{\downarrow}} - \sqrt{N_{\downarrow} \times S_{\uparrow}}}{\sqrt{N_{\uparrow} \times S_{\downarrow}} + \sqrt{N_{\downarrow} \times S_{\uparrow}}}$$

Note: Still some lingering acceptance issues from gain differences, but small

Errors shown account for remaining acceptance asymmetry

Results for $x_F < 0$ are consistent with zero in all cases

Comparison to Previous Runs

Run 8 is mostly consistent with **previous results**. However, **Run 8** shows A_N continuing to fall at low p_T

Comparison to Previous Runs

18

FPD and **STAR**

Remember that the results shown so far included a BBC coincidence requirement in software.

STAR Run 6 with FPD

This leads to a nearly pure **non-singly diffractive (NSD)** event sample.

FPD and STAR

STAR Run 6 with FPD

Since no hardware BBC coincidence was required, we can also look at the events passing the east BBC and *failing* on the west side.

This leads to an event sample that contains a mixture of **singly-diffractive and nonsingly diffractive (SD+NSD)** processes.

Single-diffractive Enhanced Event Sample

Results for the two different event samples are consistent

- Red points: (nearly pure) nonsingly diffractive
- Blue open points: mixture of nonsingly diffractive events from West **BBC** inefficiency and singly diffractive events,
- Non-collision backgrounds in the SD+NSD event sample are still under investigation. Systematics are no greater than statistics.

Single-diffractive Enhanced Event Sample

22

Conclusions

- Run-8 A_N for p+p $\rightarrow \pi^0$ +X at forward rapidity are mostly consistent with previous results
- However, data from Run-8 suggest A_N at large x_F continues to fall with lower p_T
- Results from analysis of an event sample that contains a mixture of single-diffractive and NSD events are consistent with the results for non-singly diffractive events

Back-up Slides

Run 8 Calibration

25

Run-8 FPD Calibration

Run-8 FPD Calibration

- Channel-by-channel and run-by-run Raw ADC's are analyzed for pedestal shift
- Reconstruct π^0 , channel-by-channel, correcting to known mass value until convergence for all channels

Systematic Uncertainty

p_T vs. Summed Energy

Background Fit

Background Trigger Rage

Long dwell vernier scan, run=9068088

