Measurement of global spin alignment of vector mesons at RHIC

This work in part supported by grant from DOE Office of Science

Subhash Singha Institute of Modern Physics Chinese Academy of Sciences, Lanzhou (For the STAR Collaboration)

This work is supported in part by CAS

Motivation

- Global spin alignment (ρ_{00}) analysis method
- Results:

Au+Au at $\sqrt{s_{NN}}$ = 11.5 - 200 GeV (BES): ϕ and K*⁰ Ru+Ru & Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV (Isobar): K*^o and K*+/-

Summary

Outline

Angular momentum

Becattini et. al., Phys. Rev. C. 77, 024906 (2008)

Motivation

In non-central heavy-ion collisions

• A large orbital angular momentum (OAM) imparted into the system

 $L = r \times p \sim bA \sqrt{s_{\rm NN}} \sim 10^4 \,\hbar$

 Such a huge OAM can polarize quarks and antiquarks due to "spin-orbit" interaction.

Liang et. al., Phys. Rev. Lett. B. 94, 102301 (2005)

Motivation

In non-central heavy-ion collisions

• Initial strong magnetic field (B) is expected $eB \sim m_{\pi}^2 \sim 10^{18}$ Gauss Such strong B field can also polarize quarks. Can induce different spin polarization for quarks and anti-

quarks with different magnetic moments

Yang, et. al., Phys Rev C 97, 034917 (2018)

Vector meson spin alignment (poo)

Spin alignment (poo):

Measured from the angular distribution (θ^*) of the daughter particle in parent's rest frame

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

 ρ_{00} : 00th component of spin density matrix θ^* : Angle between momentum of daughter and polarization axis in parent's rest frame

• Deviation of ρ_{00} from (1/3) indicates spin alignment

Schiling et. al., Nucl. Phys. B 15, 397 (1970) (STAR Collaboration) Phys. Rev. C 77, 61902 (2008)

The STAR detector and event plane

- Uniform acceptance, full azimuthal coverage
- <u>TPC: tracking, centrality and event plane</u>
- <u>TPC+TOF</u>: particle identification

• Second order event plane (Ψ_2) is measured using the TPC with $0.15 < p_T < 2.0 \text{ GeV/c}$

Polarization axis \rightarrow Perpendicular to Ψ_2

Signal reconstruction

AΓ Breit Wigner = $2\pi (m - m_0)^2 + (\Gamma/2)^2$

> Mixed event (φ) and rotational background (K*⁰ and K*+/-) subtraction Yield is calculated from histogram integration

Analysis method

- Raw yield of K^{*0} is extracted from five $|\cos \theta^*|$ bins
- Yield of K^{*0} is corrected for efficiency and acceptance using STAR detector simulations

• Observed ρ_{00}^{obs} is calculated from fitting the yield with function: $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}^{obs}) + (3\rho_{00}^{obs} - 1) \cos^2\theta^* \right]$

• Observed ho_{00}^{obs} is corrected for TPC event plane resolution (R) $\rho_{00} - \frac{1}{3} = \frac{4}{1+3R} (\rho_{00}^{\text{obs}} - \frac{1}{3})$

Tang et. al., Phys. Rev. C 98, 044907 (2018)

Analysis method

- Raw yield of K^{*+} is extracted from five $|\cos \theta^*|$ bins
- Yield of K*+ is corrected for efficiency and acceptance using STAR detector simulations

• Observed ρ_{00}^{obs} is calculated from fitting the yield with function: $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}^{obs}) + (3\rho_{00}^{obs} - 1) \cos^2\theta^* \right]$ • Observed ho_{00}^{obs} is corrected for TPC event plane resolution (R) $\rho_{00} - \frac{1}{3} = \frac{4}{1+3R} (\rho_{00}^{\text{obs}} - \frac{1}{3})$

Tang et. al., Phys. Rev. C 98, 044907 (2018)

Results: Au+Au Beam Energy Scan

Particle Species	Quark content	Mass (GeV/c ²)	Spin	Lifetime (fm/c)
ф	<i>SS</i>	1.092	1	45
K*0	$d\bar{s}$	0.896	1	4

$\sqrt{s_{\rm NN}} = 11.5 - 200 \,{\rm GeV}$: ϕ and K*⁰

ροο ($\sqrt{s_{NN}}$): φ and K*^o from BES-I

ALICE Collaboration, Phys. Rev. Lett. 125, 012301 (2020)

Expectation of \rho_{00} from theory

Physics Mechanisms	(ρ ₀₀)		
c_n: Quark coalescence vorticity & magnetic field^[1]	< 1/3 (Negative ~ 10 ⁻⁵)		
c ε: Vorticity tensor[1]	< 1/3 (Negative ~ 10 ⁻⁴)		
c _E : Electric field ^[2]	> 1/3 (Positive ~ 10 ⁻⁵)		
Fragmentation ^[3]	> or, < 1/3 (~ 10 ⁻⁵)		
Local spin alignment and helicity ^[4]	< 1/3		
Turbulent color field ^[5]	< 1/3		
c _φ : Vector meson strong force field ^[6]	 > 1/3 (Can accomodate large positive signal) 		

[1]. Liang et., al., Phys. Lett. B 629, (2005); Yang et., al., Phys. Rev. C 97, 034917 (2018); Xia et., al., Phys. Lett. B 817, 136325 (2021); Beccattini et., al., Phys. Rev. C 88, 034905 (2013) [2]. Sheng et., al., Phys. Rev. D 101, 096005 (2020); Yang et., al., Phys. Rev. C 97, 034917 (2018) [3]. Liang et., al., Phys. Lett. B 629, (2005) [4]. Xia et., al., Phys. Lett. B 817, 136325 (2021); Guo, Phys. Rev. D 104, 076016 (2021) [5]. Muller et., al., Phys. Rev. D 105, L011901 (2022) [6]. Sheng et., al., Phys. Rev. D 101, 096005 (2020); Sheng et., al., Phys. Rev. D 102, 056013 (2020)

Expectation of \rho_{00} from theory

Physics Mechanisms	(ρ ₀₀)	
c∧ : Quark coalescence vorticity & magnetic field ^[1]	< 1/3 (Negative ~ 10 ⁻⁵)	
c ε: Vorticity tensor[1]	< 1/3 (Negative ~ 10 ⁻⁴)	
c _E : Electric field ^[2]	> 1/3 (Positive ~ 10 ⁻⁵)	
Fragmentation ^[3]	> or, < 1/3 (~ 10 ⁻⁵)	
Local spin alignment and helicity ^[4]	< 1/3	
Turbulent color field ^[5]	< 1/3	
c _φ : Vector meson strong force field ^[6]	 > 1/3 (Can accomodate large positive signal) 	

• The electric part of the ϕ -meson field can polarize s and \overline{s} quarks with a large magnitude due to strong interaction (large coupling constant g_{ϕ})

- Like electric charges in motion can generate an EM field,
 - s and \overline{s} quarks in motion can generate an effective φ-meson field

$$\rho_{00}(\phi) \approx \frac{1}{3} + c_{\Lambda} + c_{\epsilon} + c_{E} + c_{\phi};$$

$$c_{\phi} \equiv \frac{g_{\phi}^{4}}{27m_{s}^{4}m_{\phi}^{4}T_{eff}^{2}} \langle \boldsymbol{p}^{2} \rangle_{\phi} \langle \tilde{E}_{\phi,z}^{2} + \tilde{E}_{\phi,x}^{2} \rangle;$$

$$C_{s}(y) \equiv g_{\phi}^{4} \langle \tilde{E}_{\phi,z}^{2} + \tilde{E}_{\phi,x}^{2} \rangle$$

ροο ($\sqrt{s_{NN}}$): φ and K*⁰ from BES-I

- Surprisingly large φ ρ₀₀ can not be accommodated by conventional mechanisms
- Polarization by a strong force field of vector meson \rightarrow Can accommodate large deviation for $\phi \rho_{00}$ at mid-central collisions

$$\rho_{00}(\phi) \approx \frac{1}{3} + c_{\Lambda} + c_{\epsilon} + c_{E} + c_{\phi};$$

$$c_{\phi} \equiv \frac{g_{\phi}^{4}}{27m_{s}^{4}m_{\phi}^{4}T_{eff}^{2}} \langle p^{2} \rangle_{\phi} \langle \tilde{E}_{\phi,z}^{2} + \tilde{E}_{\phi,x}^{2} \rangle;$$

$$C_{s}(y) \equiv g_{\phi}^{4} \langle \tilde{E}_{\phi,z}^{2} + \tilde{E}_{\phi,x}^{2} \rangle$$

Sheng el. al., Phys. Rev. D 101, 096005 (2020) Sheng el. al., Phys. Rev. D 102, 056013 (2020)

ρ₀₀ (centrality): φ and K*⁰ from BES-I

STAR

• Need inputs from theory to understand centrality differential ρ_{00}

For central at 200 GeV: $\phi, K^{*0} \rho_{00} < 1/3$ Local spin alignment^[1] or, helicity contribution^[2]

 For mid-central and peripheral: Φ, K^{*0} ρ₀₀ >~ 1/3

> [1]. Xia et al, Phys. Lett. B 817, 136325 (2021) [2]. Gao, Phys. Rev. D 104, 076016 (2021)

ρ₀₀ (**р**_T): φ and K*⁰ from BES-I

STAR Collaboration, arXiv: 2204.02302

• Need inputs from theory to understand p_T differential ρ_{00}

Results: Zr+Zr and Ru+Ru (Isobar collisions)

Particle Species	Quark content	Mass (GeV/c ²)	Spin	Lifetime (fm/c)	Magnetic moment
K ^{*0} (anti-K ^{*0})	$d\bar{s} \ (\bar{ds})$	0.896	1	4	$\mu_d \approx -0.97 \mu_N$
K*+/-	$u\overline{s}$ $(\overline{u}s)$	0.892	1	4	$\mu_u \approx 1.85 \mu_N$

(Expect negligible contribution)

$\sqrt{s_{\rm NN}}$ = 200 GeV: K*⁰ and K*+/-

 $\mu_{\bar{s}} \approx 0.61 \mu_N$

Yang, et. al., Phys Rev C 97, 034917 (2018)

Need inputs from theory to understand this behavior

K* ρ₀₀ from Isobar collisions

Yang, et. al., Phys Rev C 97, 034917 (2018)

ρ₀₀ (Centrality): K*⁰ and anti-K*⁰

ρ₀₀ (Centrality): K*⁰ and anti-K*⁰

роо (рт): K*0 and anti-K*0

роо (рт): K*0 and anti-K*0

ρ₀₀(рт): К*+/-

• <u>System size dependence:</u> ρ_{00} Zr+Zr ~ Ru+Ru Θ

ρ₀₀(**р**_T): K*+/- and K*⁰

- We presented ρ_{00} of ϕ and K^{*0} from Au+Au BES-I at 11.5-200 GeV
- For 20-60%: $\rho_{00}(\phi) > 1/3$, $\rho_{00}(K^{*0}) \sim 1/3$
- Beam energy dependence of $\phi \rho_{00}$ at mid-central collisions is consistent with a model fitting with vector meson force fields
- We presented ρ₀₀ of K^{*0} and K^{*+/-} from RHIC Isobar (Ru+Ru & Zr+Zr) at 200 GeV
- For 20-60%: ρ_{00} (K*+/-) > ρ_{00} (K*0)
- ρ₀₀ (K*⁰): Zr+Zr ~ Ru+Ru ~ Au+Au
- More inputs from theory are needed to interpret the ρ_{00} measurements

Summary

Isobar (Ru+Ru and Zr+Zr)

Thank you for your attention

Backup slides

ρ₀₀ (Centrality): K^{*0} and anti-K^{*0} from isobar

Simulation framework for efficiency and acceptance

Efficiency x Acceptance = RC/MC

Correction factor includes acceptance and efficiency (p_T , ϕ - Ψ , cos θ^*) with v₂ effect included

Efficiency and acceptance for K*

ρ₀₀ ($\sqrt{s_{NN}}$): φ and K*⁰ for central collisions from BES-I STAR

