A_{LL} for Pion Production at STAR

Joe Seele (MIT) for the TAR Collaboration (for Bernd Surrow)

APS April Meeting

The Spin Puzzle

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s} + \cdots) dx \qquad \Delta G = \int \Delta g dx$$

Current Picture of ΔG

With the inclusion of the RHIC and new DIS data the uncertainties on ΔG have been reduced drastically.

Region probed at sqrt(s)=200 GeV at RHIC

Helicity Asymmetries

Take the asymmetry of proton helicity configurations

and translating...

$$A_{LL} \approx a_{gg} \Delta g \Delta g + a_{qg} \Delta q \Delta g + a_{qq} \Delta q \Delta q'$$

RHIC

The world's first polarized proton collider

Mir

STAR

Neutral Pion Cross Section

- \bullet The π^0 is reconstructed through the di-photon channel and tagged through its invariant mass
- The background is characterized in simulation.
 nOCD describes data well
- pQCD describes data well

Neutral Pion A_{LL} (2005+2006)

Maximum gluon polarization scenario (GRSV-Max) is ruled out

2006 preliminary result uncertainties are comparable to PHENIX at $p_T \sim 8 \text{ GeV/c}$ and data extend to a higher p_T than PHENIX

Charged Pion Cross Section

Provides a 1σ separation
 between K/p and pions

pQCD describes data well

Charged Pion A_{LL} (2005)

Charged pions are useful for constraining ΔG

1. Can give the sign of Δg

$$\Delta g > 0 \longrightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^-}$$
$$\Delta g < 0 \longrightarrow A_{LL}^{\pi^+} < A_{LL}^{\pi^-}$$

2. π^+ is a strong "lever-arm" for measuring Δg especially since Δg is small

 $A_{LL}^{\pi^+} \propto \Delta g \Delta g + \Delta g \Delta u \longrightarrow \Delta g \Delta u$

Charged Pion A_{LL} (2006)

A new way of measuring the charged pion. Triggering on a jet and measuring away side pion gives less trigger bias. Allows less biased measurement of something akin to z.

Charged Pion A_{LL} (2006)

Pions at 500 GeV

from the polarized pdfs

Conclusions

- Helicity asymmetry measurements for hadron production in polarized proton-proton collisions are important to unraveling of the proton spin puzzle
- Comparison of the $\pi^{\scriptscriptstyle +},\,\pi^{\scriptscriptstyle 0},\,\text{and }\pi^{\scriptscriptstyle -}$ asymmetries will give information about the sign of Δg
- Future 500 GeV running will provide sensitivity of Δg at lower x

Backup Slides

Sign of ΔG from Charged Pions

In $5 < p_T < 10$ region

$$A_{LL} \propto a_{gg} \Delta g \Delta g + a_{qg} \Delta q \Delta g$$

If we also assume a favored fragmentation for $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$

$$D_{u,\bar{d}}^{\pi^+} >> D_{\bar{u},d,s,\bar{s}}^{\pi^+}$$
 and $D_{d,\bar{u}}^{\pi^-} >> D_{d,\bar{u},s,\bar{s}}^{\pi^-}$

And that gluons fragment to $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ with nearly the same magnitude

$$A_{LL}^{\pi^{+}} \approx a_{gg} \Delta g \Delta g + a_{gu} \Delta g \Delta u \text{ and } A_{LL}^{\pi^{-}} \approx a_{gg} \Delta g \Delta g + a_{gd} \Delta g \Delta d$$
And because
$$a_{gq} > 0$$

$$\Delta u > 0$$

$$\Delta d < 0$$

$$\Delta g < 0 \rightarrow A_{LL}^{\pi^{+}} < A_{LL}^{\pi^{-}}$$