The STAR Longitudinal Spin Program

Joe Seele (MIT) for the

WWND09

Outline

- The Spin Puzzle
- The STAR experiment
- STAR Results
- Future Directions

The Spin Puzzle

The proton is viewed as being a "bag" of bound quarks and gluons interacting via QCD

Spins + orbital angular momentum need to give the observed spin 1/2 of proton

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s} + \cdots$$

J. Seele - WWND

Helicity Asymmetries

Taking the asymmetry of proton helicity configurations

Needed for hadrons but not jets

and translating...
$$A_{LL} \approx a_{gg} \Delta G^2 + a_{qg} \Delta q \Delta G + a_{qq} \Delta q \Delta q'$$

PliT

What did we know about ΔG ?

STAR

STAR Measurements

Inclusive Measurements

Reconstruct a piece of the final state without considering the structure of the event

e.g.
$$\vec{p} + \vec{p} \rightarrow Jet + X$$
 or $\vec{p} + \vec{p} \rightarrow h + X$

Currently all STAR longitudinal spin results are inclusive measurements

A Pro

Larger cross section than exclusive or correlation measurements

A Con

Does not constrain initial parton kinematics well (e.g. a jet of a given p_T could have come from an initial parton with a range of x values)

Inclusive Jets

 $\vec{p} + \vec{p} \rightarrow Jet + X$

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

Smeared x-range for jets at a few $p_T s$

J. Seele - WWND

Inclusive Jets A_{LL} (2005)

Maximum gluon polarization scenario (GRSV-MAX) ruled out

Inclusive Jets A_{LL} (2006)

With the increased statistics in 2006 (~x10) the uncertainties are greatly reduced

A _{LL} systematics	(× 10 ⁻³)
Reconstruction + Trigger Bias	[-1,+3] (p _T dep)
Non-longitudinal Polarization	~ 0.03 (p _T dep)
Relative Luminosity	0.94
Backgrounds	1 st bin ~ 0.5 else ~ 0.1
p _⊤ systematic	± 6.7%

Inclusive Jets - Constraint on ΔG

Using the available fits the confidence level is calculated using the 2005+2006 data sets

Many of the sets with large gluon polarization (neg or pos) are ruled out

Integral constrained to be over the x range probed by STAR

A Reminder

1417

Inclusive Jets - Impact on Global Fits

There is a big need for a true mapping of the x dependence of the gluon polarization and an increased range in x

Inclusive Jets vs. Inclusive Hadrons

Information from inclusive hadron measurements is complementary to inclusive jet measurements

Jets $\vec{p} + \vec{p} \rightarrow Jet + X$

No fragmentation functions

Jet definition provides a complication when relating theory and measurement

Suffers from JES uncertainty

Hadrons $\vec{p} + \vec{p} \rightarrow h + X$

Needs a convolution with FFs but this gives a selectivity to different flavors

Less uncertainty in $\ensuremath{p_{\mathsf{T}}}$ measurement

Inclusive Hadrons

Neutral Pion A_{LL} (2005+2006)

Reconstructed using the diphoton decay channel

Maximum gluon polarization Scenario (GRSV-Max) is ruled out

2006 preliminary result uncertainties are comparable to PHENIX at $p_T \sim 8 \text{ GeV/c}$ and data extend to a high p_T than PHENIX

Charged Pion A_{LL} (2005)

Charged pions are useful for measuring ΔG

1. Can give the sign of Δg

$$\Delta g > 0 \longrightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^-}$$
$$\Delta g < 0 \longrightarrow A_{LL}^{\pi^+} < A_{LL}^{\pi^-}$$

2. π^+ is a strong "lever-arm" for measuring Δg especially since Δg is small

$$A_{LL}^{\pi^+} \propto \Delta g \Delta g + \Delta g \Delta u \longrightarrow \Delta g \Delta u$$

Charged Pion A_{LL} (2006)

A new way of measuring the charged pion. Triggering on a jet and measuring away side pion gives less trigger bias. Allows less biased measurement of something akin to z.

Future Measurements

Di-jets at STAR

Correlation measurements provide information about x_1 and x_2 which can be used to get the shape of Δg

At LO

$$\frac{M}{\sqrt{s}} = \sqrt{x_1 x_2} \quad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

The plots are expectations from STAR run9 BUR with 50pb⁻¹ and 60% polarization

Ws at STAR (mid-rapidity)

At sqrt(s)=500 GeV, W's will be produced in p+p collisions

$$u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2) \rightarrow W^+$$

$$\overline{u}(x_1)d(x_2) + d(x_1)\overline{u}(x_2) \rightarrow W^-$$

They can be tagged through their lepton+neutrino decay channel

Single spin asymmetries can be measured to give information about polarized quark pdfs.

$$A_L^{W^+} = \frac{\Delta u(x_1)\overline{d}(x_2) - \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}$$
$$A_L^{W^-} = \frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)}$$

Ws at STAR (mid-rapidity)

In preparation for the upcoming 500 GeV run, QCD and W for mid-rapidity before cuts STAR has been studying the reconstruction of the W.

The simulations use full detector response and realistic QCD background.

Run9 W Algorithm Simulation Results

The main source of background is hadrons so good e/h separation is necessary.

The current analysis uses a combination of tracking, shower shape, isolation style, missing energy style, and event shape cuts.

60

Ws at STAR (forward rapidity)

At forward or backward rapidity (defined by single polarized proton), the formulas for the single spin asymmetries simplify to

$$A_{L}^{W^{+}}(y_{W} \gg 0) \approx \frac{\Delta u(x)}{u(x)} \qquad A_{L}^{W^{-}}(y_{W} \gg 0) \approx \frac{\Delta d(x)}{d(x)}$$
$$A_{L}^{W^{+}}(y_{W} \ll 0) \approx -\frac{\Delta \overline{d}(x)}{\overline{d}(x)} \qquad A_{L}^{W^{-}}(y_{W} \ll 0) \approx -\frac{\Delta \overline{u}(x)}{\overline{u}(x)}$$

At forward and backward rapidity the rapidity of the lepton, the rapidity of the W and the partonic x are all strongly correlated.

500 GeV Program Projections

J. Seele - WWND

Summary

- STAR inclusive measurements at sqrt(s)=200 GeV have made a strong contribution to our knowledge of Δg .
- STAR will continue to impact our knowledge Δg as higher statistics sqrt(s)=200 GeV and sqrt(s)=500 GeV inclusive measurements are included in the global fits.
- Future di-jet (and other correlation) measurements will constrain the shape of Δg .
- The STAR W measurements will probe the polarizations of the anti-quarks in the proton.

Backup Slides

Inclusive Jets

 $\vec{p} + \vec{p} \rightarrow Jet + X$

Require jet p_{T} be large to be in hard scattering region

No fragmentation functions but relation of measurement to theory is complicated

Suffers from JES uncertainty

Jets at each p_T are a mix of subprocesses from a range in x

STAR

Helicity Asymmetries

Inclusive Hadrons

 $\vec{p} + \vec{p} \twoheadrightarrow h + X$

A type of final state particle is measured regardless of rest of event

> More statistics than jets, but not as clean because of FFs But also have flavor information to use

△G in Polarized p+p Collisions

Three Things Needed to Measure ΔG

- 1) Gluons in colliding protons
- 2) Detectable final state sensitive to gluon scattering
- 3) Helicity dependent cross section

△G in Polarized p+p Collisions

Three Things Needed to Measure ΔG

- 1) Gluons in colliding protons
- 2) Detectable final state sensitive to gluon scattering
- 3) Helicity dependent cross section

Gluons enter p+p scattering at leading order and are dominant in the collisions at low p_T

e.g. π^0 subprocess fractions at mid-radpidity

△G in Polarized p+p Collisions

Three Things Needed to Measure ΔG

- 1) Gluons in colliding protons
- 2) Detectable final state sensitive to gluon scattering
- 3) Helicity dependent cross section

Spin Transfer

