Recent Results from the

Kenneth N. Barish for the STAR Collaboration

8th International Conference on Quarks and Nuclear Physics, November 2018 (QNP2018)

UC RIVERSITY OF CALIFORNIA

The Proton Spin Structure (p+p)

Polarization experiments

- » Longitudinal Spin
 - Gluon polarization
 - Sea quark polarization
 - Longitudinal Spin Transfer
- » Transverse Spin
 - Sivers effect
 - Collins effect
 - Transversity
 - Transverse Spin Transfer

Forward Upgrade

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory Long Island, NY

Kenneth N. Barish - QNP 2018, Tsukuba

- World's **only** polarized synchrotron collider
- Spin state known for **every** proton bunch
- Longitudinally polarized collisions achieved with Spin Rotators

Gluon Polarization (Central Rapidity)

Kenneth N. Barish - QNP 2018, Tsukuba

Gluon Polarization (Intermediate rapidity)

Dijets at 200 GeV in 2009

Phys.Rev. D98, 032011 (2018)

- More-forward production probes lower x, down to 0.01
- Provides tighter constraints to size and especially shape of Δg(x) for x<0.05
 Pions at 200 GoV in 2006
- Pions at 200 GeV in 2006
- Phys.Rev. D89, 012001 (2014)

Pions at 510 GeV in 2012 and 2013

Gluon Polarization (Forward Pions)

- Pushing farther forward probes x down to 0.001
- Provides constraints to the unexplored low-x region, which is *abundant* with soft gluons
- Shown for two pseudorapidity regions

Sea Quark Polarization (Run 2013 A_L(W))

- STAR 2013 results are the most precise measurements of W A_L so far.
- Provides constraints on sea quark helicity distributions
- A_L results at near-forward rapidity added.
- Consistent with 2011+2012 published results, with 40% uncertainty reduced.
- Paper to be submitted soon
- Clear evidence of flavor asymmetry for polarized sea..
 $\Delta \overline{u} > \Delta \overline{d}$

Longitudinal spin transfer D_{LL} results

- D.de Florian, M.Stratmann, and W.Vogelsang, PRL81, 530 (1998)
- Q. Xu, Z.T. Liang, E. Sichtermann, PRD 73, 077503 (2006)

- ✓ Longitudinal spin transfer
 D_{LL} provides access to
 helicity distribution ∆f and
 polarized fragmentation
 function ∆D
- ✓ Improved longitudinal spin transfer from STAR 2009
 Data
- ✓ D_{LL} results are still consistent with zero within the uncertainties.
- ✓ The size of the statistical uncertainties is similar to the spread of different models.

Transverse Momentum PDFs (TMDs)

Transverse: Sivers A_N(W)

Run 2011: Exploratory A_N(W) @ 500GeV

- W kinematics fully reconstructed
- Favors sign change if evolution effects are modest (Sivers_{DIS} = - Sivers_{Drell-Yan})

Run 2017: Definitive $A_N(W)$, $A_N(DY)$, $A_N(\gamma)$

- See the sign change if evolution effects are less than factor of 5
- Probe anti-quark Sivers function for the first time
- Directly measure the evolution effects
 → Access to similar observables at
 - comparable x but different Q²
 - ightarrow W & Z central and Drell-Yan forward
- Currently under analysis
 ^{-0.8}
 Run 2021 (proposed): Go beyond testing the sign⁻¹

Transverse: TransversityProton momentum \rightarrow
Proton spin \uparrow

Significant measurements of transversity convoluted with:

- » Di-hadron interference fragmentation function (IFF)
- » Collins fragmentation function

Both have similar magnitudes in 200 and 500 GeV pp collisions Complementary results that obey different evolution equations Kenneth N. Barish - QNP 2018, Tsukuba

Transverse: IFF Transversity Measurements

PLB 780, 332 (2018)

STAR measurements provide the first observations of transversity at very high scales

STAR IFF measurements in 200 and 500 GeV pp collisions are well described by recent IFF calculations

Transverse: "Collins-like" effect

- polarized gluons in a polarized proton
- » New preliminary results from 200 GeV pp collisions
 - Will provide much stronger limits

Transverse spin transfer D_{TT} results

- Transverse spin transfer of hyperons provide access to transversity and transversely polarized fragmentation function
- ✓ First transverse spin transfer measurement in p+p collisions at RHIC.
- ✓ Result:

<p_T>=6.7 GeV and <η>= 0.5:

 $D_{TT}(\Lambda) = 0.031 \pm 0.033(stat) \pm 0.008(sys)$

 $D_{_{TT}}(\overline{\Lambda}) = -0.034 \pm 0.040(stat) \pm 0.009(sys)$

✓ D_{TT} of $\Lambda/\overline{\Lambda}$ are consistent with a model prediction, also consistent with zero within uncertainty.

Physics with STAR in 2021+

Opportunity:

Unique program addressing several fundamental questions in QCD

Motivation: (The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922))

- Central to the mission of the RHIC physics program in cold and hot QCD
- Fully realize the scientific promise of the EIC
 - → Lay the groundwork for the EIC, both scientifically and by refining the experimental requirements
 - → Test EIC detector technologies under real conditions, i.e SiPMs

Take full advantage of STAR's unique capability including upgrades for BES-II:

Midrapidity program based on existing STAR detector utilizing iTPC, eToF and EPD upgrades (https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669)

Forward rapidity program based on upgrade consisting of Hcal + Ecal+ Tracking (Si + sTGCs) at 2.5 < η < 4 (https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648)

Goal: Complete upgrade for potential polarized pp@500 GeV run in 2021 and the sPHENIX data taking periods

Conclusions

- STAR results play a central role in expanding the frontier of cold-QCD Recent Publications and Submissions:
 - Improved measurement of the longitudinal spin transfer to Λ and Λ-bar hyperons in polarized protonproton collisions at Vs = 200 GeV accepted by Phys. Rev. D.
 - Transverse spin transfer to Lambda and anti-Lambda hyperons in polarized proton-proton collisions at sqrt(s)=200 GeV accepted by Phys. Rev. D.
 - Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized pp Collisions at sqrt(s) = 200 GeV. Phys. Rev. D 98, 032011 (2018)
 - Longitudinal double-spin asymmetries for pi0s in the forward direction for 510 GeV polarized pp collisions. Phys. Rev. D 98, 032013 (2018)
 - Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p+p collisions at sqrt(s)=500 GeV. Phys. Lett. B 780, 332-339 (2018)
 - Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarizedproton collisions at sqrt(s) = 500 GeV. Phys. Rev. D 97, 32004 (2018)
 - Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized p+p collisions at sqrt(s) = 200 GeV. Phys. Rev. D 95, 71103 (2017)

STAR has a large body of additional spin data under analysis

- The proposed forward upgrade builds upon the strengths of STAR to establish innovative and precision probes
 - to address critical questions, now
 - to fully realize the scientific promise of the future EIC

Gluon Polarization (Summary of A_{LL} Measurements)

√s (GeV)	RHIC Run	Central Jets	Central Dijets	Interm. Dijets	Interm. Pions	Forward Pions	Forward Dijets
200	2006	Published* x>0.05			Published x>0.01		n/a
200	2009	Published x>0.05	Published x>0.05	Published x>0.01			n/a
200	2015	Underway x>0.05	Underway x>0.05			Underway x>0.0025	n/a
510	2012	Preliminary x>0.02	Preliminary x>0.02	Underway x>0.004	Underway x>0.004	Published x>0.001	n/a
510	2013	Preliminary x>0.02	Preliminary x>0.02	Underway x>0.004	Underway x>0.004	Published x>0.001	n/a
200 & 510	2021+						Future x>0.001

Forward Instrumentation for STAR Upgrade (I)

Detector	pp and pA	AA
ECal	~10%/√E	$\sim 20\%/\sqrt{\mathrm{E}}$
HCal	~60%/\E	
Tracking	charge separation	$0.2 < p_T < 2 \text{ GeV/c with } 20-30\%$
	photon suppression	$1/\mathbf{p}_{\mathrm{T}}$

Calorimeter System

Intensive R&D work on both ECal and HCal as part of STAR and EIC Detector R&D

- Beam tests and STAR in situ tests
- System optimized for cost and performance
- > Same readout for both calorimeters \rightarrow cost
- **ECal** Reuse PHENIX PbSC calorimeter with new readout instead of W/ScFi SPACAL
- ➢ Significant cost reduction ☺
- Non-compensating calorimeter system ⁽³⁾
 HCal: Sandwich iron-scintillator plate sampling calorimeter.

Side View

Forward Instrumentation for STAR Upgrade (II)

Si + Small-strip Thin Gap Chambers

Momentum resolution: 20-30% for 0.2 < p_T < 2 GeV/c track finding efficiency: 80%@100 tr/ev

3 Silicon disks + 4 sTGC disks

- Si- disks: 140, 160, 187 cm from IP
 Built on successful experience with STAR IST
 - → Single-sided double-metal mini-strip sensors
 - → Granularity: fine in ϕ and coarse in R
 - $\rightarrow~$ Reuse of the IST cooling system
- > sTGC: 270, 300, 330, 360 cm from IP (outside
 - Magnet)
 - \rightarrow Position resolution: ~100 μm
 - → Material budget: ~0.5% per layer, 2 layers / disk
 - → Readout: reuse current STAR TPC electronics

Summary of Forward pp & pA Measurements

	Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required
		(GeV)	Luminosity			Upgrade
	2023	$\mathbf{p}^{T}\mathbf{p}$	300 pb ⁻¹	Subprocess driving the large	A_N for charged	Forward instrum.
		200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking
					flavor enhanced	
ch					jets	
edu	2023	p ^T Au	1.8 pb^{-1}	What is the nature of the	R_{pAu} direct	
lled		(a)	8 weeks	initial state and hadronization	photons and DY	Forward instrum.
		200		in nuclear collisions		ECal+Hcal+Tracking
H				Clean signatures for		
				Saturation	Dihadrons, γ -jet,	
un	2023	$\mathbf{p}^{\uparrow} \mathbf{A} 1$	12.6 nb^{-1}	A dependence of nPDE	R : direct	Forward instrum
nin	2023	p A	12.0 pb	A-dependence of III DI,	\mathbf{R}_{pAl} . uncer	FCal+HCal+Tracking
ad		200	o weeks	A-dependence for Saturation	photons and D I	
		200		1	Dihadrons, γ-jet,	
					h-jet, diffraction	
	2021	$\mathbf{p}^{T}\mathbf{p}$	1.1 fb ⁻¹	TMDs at low and high x	A_{UT} for Collins	Forward instrum.
fr		510	10 weeks		observables, i.e.	ECal+HCal+Tracking
P P					hadron in jet	
otei 'e r					modulations at η	
un tiz					>1	
nin ¹	2021	p p a	1.1 fb^{-1}	$\Delta g(x)$ at small x	A_{LL} for jets, di-	Forward instrum.
0 ⁱ Q		510	10 weeks		jets, h/γ-jets	ECal+HCal
					at $\eta > 1$	