Measurements of Polarized Glue at STAR

David Staszak for the STAR Collaboration UCLA

RHIC & AGS Users Meeting BNL, June 1-5, 2009

The Proton Spin Structure

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \left\langle L_{q,g} \right\rangle$$

• From polarized-DIS measurements we know the quark contribution is small (0.003 < x < 0.8):

 $\Delta\Sigma~pprox$ 20-30%

- Gluon polarized distributions are not well constrained
- Access to ΔG through A_{LL} asymmetries at RHIC

$$A_{LL} = \frac{\Delta\sigma}{\sigma} \propto \frac{\Delta f_1 \otimes \Delta f_2 \otimes d\sigma^{f_1 f_2 \to fX} \cdot a_{LL}^{f_1 f_2 \to fX} \otimes D_f^h}{f_1 \otimes f_2 \otimes d\sigma^{f_1 f_2 \to fX} \otimes D_f^h}$$

Several contributing sub-processes: → including gluons at 1st order!

Beam-Beam Counter:

- MinBias Trigger
- Relative Luminosities
- 3.4<|*η*|<5

<u>Calorimetry:</u>

• Barrel EM *0*<*η*<*1* (2003-2005)

- Time Projection Chamber:
- Charged Tracks P_T
 - -1.4<η<1.4

-1<η<1 (2006) • Endcap EM 1.09<η<2.0

Particle Neutral Energy

- Forward Pion Detector -4.1< η <-3.3
- Forward Meson Spec. 2.5 < η <4.0

Experimentally Measuring A_{LL}

Concurrent Measurements:

- Numbers of Observables N^{ij} Reconstructed for Different Bunch Patterns
- Relative Luminosity R from BBC Coincidence Rates for different Bunch Patterns
- Polarization of Beams (magnitude from CNI Polarimeters, direction of polarization vector from combination CNI Polarimeters, BBC)

Inclusive Measurements at STAR

• Inclusive jets, hadrons (π^0 , $\pi^{+/-}$) probe a range of partonic x values and subprocesses for a given p_T bin

• Inclusive signals have a larger cross section than correlated or exclusive signals \rightarrow good first look

• STAR is well positioned (energy, kinematics) for jet and hadron asymmetry measurements

Complementary Measurements

Jets:

- Independent of FFs
- Large Energy Scale Uncertainty
- Limited pT resolution
- Large trigger bias

Hadrons:

- Dependence on FFs
- Better determined p_T
- $-\pi^0$ has no trigger bias

Inclusive Jet Reconstruction and Cross Section

6

2005 Inclusive Jets A_{LL}

PRL 100, 232003 (2008)

• Error bars are statistical uncertainty only, grey bands are systematic

FAR

• Data are compared to predictions within the GRSV framework with several input values of ΔG . Model calculations from:

B. Jager et. al, Phys Rev D70 034010, T Gehrmann et. al, Phys.Rev.D53 6100-6109(1996)

2006 Inclusive Jets A_{LL}

- Increased calorimeter acceptance, luminosity, and polarization over 2005
- Higher trigger thresholds to focus on higher $\ensuremath{p_{\text{T}}}$
- Factor of 3-4x improved statistical precision at higher $\ensuremath{p_{\text{T}}}$

Inclusive Jet Constraints on ΔG

Inclusive Jet Constraints on ΔG

10

Inclusive Jet Impact on DSSV Global Fit

- Includes only inclusive measurements which sample over a wide range in x, small A_{LL} measurements could come from cancellations \rightarrow correlation measurements
- Extension of x-coverage is needed

Inclusive Jet Projected A_{LL} Sensitivities

• Projected Run9 200 GeV (50pb⁻¹, 60%) would reduce A_{LL} uncertainties by a factor of ~4

• Projected sensitivity for 500 GeV (300pb⁻¹, 70%) shown \rightarrow one way to access lower x_a

Mid-rapidity Inclusive π^0 Reconstruction and Cross Section

• π^0 invariant mass from two photon decay channel: $M^2_{inv} = 2E_1E_2(1-\cos\theta)$

- BEMC invariant mass spectrum is well described by simulations of single π^0 , single η^0 , and background
- Cross section agrees well with NLO pQCD

2006 Mid-rapidity Inclusive $\pi^0 A_{LL}$

• Run 6 result sees a significant increase in statistical precision as well as a greater reach in p_T compared to Run 5

• Agreement with jets in ruling out Maximum polarization scenario

Forward rapidity $\pi^0 A_{11}$

1.0<η<2.0

• A_{LL} results are consistent with theoretical picture that asymmetry is reduced as η increases

UCLA 15

2005 Inclusive $\pi^{+/-}$ Reconstruction and Cross Section

2005 Inclusive $\pi^{+/-}$ A₁₁

10

• For qg processes, $A_{LL}(\pi^+)$ and $A_{LL}(\pi^-)$ can be utilized to track the sign of Δg

- for example, if $A_{||}(\pi^+) > A_{||}(\pi^-) \implies \Delta g > 0$

 Dominant systematic uncertainty from the use of neutral energy triggers at STAR, most pions are subleading particles in the jet

2006 Away-side $\pi^{+/-}$ A_{LL}

Problem: Increased JP threshold $2005 \rightarrow 2006$ results in a stronger fragmentation bias for charged pions in trigger jet

Solution: Analyze 'away-side' charged pions

NLO calculations: de Florian, arXiv:0904.4402

2005 Dijet Reconstruction

- Correlation measurements can be used to map out the shape of $\Delta g(x)$ via information about x_1 and x_2

• Dijet distributions are well described by Monte Carlo...

Dijet Predicted Sensitivity

Photon-Jet at STAR

- Clean probe of qg interaction
- Signal requires more luminosity than dijet measurements: $\alpha_{em}^* \alpha_s vs. \alpha_s^* \alpha_s$
- Want to focus on asymmetric partonic collisions: high-x quark and low-x gluons with the detected γ in the direction of the incident quark \rightarrow here the cross section and asymmetry are maximized
- Shower Maximum Detector (SMD) shower shape & Monte Carlo normalization analysis in progress

Summary

- STAR has a very diverse ${\Delta}G$ program with several complementary A_{LL} measurements
 - Individual results agree, and are converging on the same answer
- First inclusion of RHIC data into a global fit (Inclusive jet A_{LL} from STAR, π^0 from PHENIX) has greatly constrained global knowledge of ΔG
- Future of ΔG at STAR:
 - increased precision at 200 GeV of previous A_{LL} channels
 - continuation of current measurements into 500 GeV
 - addition of correlation measurements into the mix (di-jet and gamma-jet) at 200 GeV and 500 GeV
- ΔG at STAR is one head of a multi-pronged study of proton spin at STAR, see other spin talks during this meeting:
 - W physics Joe Seele (you already saw this one...)
 - Transverse spin results Chris Perkins, Transverse Afternoon Session
 - STAR spin highlights, results Carl Gagliardi, Plenary II

