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ABSTRACT

STUDY OF PARTICLE RATIO FLUCTUATIONS AND CHARGE
BALANCE FUNCTIONS AT RHIC

By

Hui Wang

The study of correlations between opposite-sign charge pairs and particle-ratio fluctua-

tions can provide a powerful tool to probe the properties of the quark-gluon plasma (QGP).

It has been suggested that the existence of a QCD phase transition would cause an increase

and divergence of fluctuations. Thus the event-by-event particle-ratio fluctuations could be

used to study strangeness and baryon number fluctuations near the critical point in the QCD

phase diagram. On the other hand, the balance function, which measures the correlations

between opposite-sign charge pairs, is sensitive to the mechanisms of charge formation and

the subsequent relative diffusion of the balancing charges. The study of the balance func-

tion can provide information about charge creation time as well as the subsequent collective

behavior of particles.

For fluctuations we present dynamical K/π, p/π, and K/p ratio fluctuations from Au+Au

collisions at
√
sNN = 7.7 to 200 GeV at the Relativistic Heavy Ion Collider using the STAR

detector. Charge dependent results as well as multiplicity scaling properties of these fluc-

tuation results are discussed. The STAR data are compared to different theoretical model

predictions and previous experimental measurements.

For balance functions we present results for charged particle pairs, identified charged

pion pairs, and identified charged kaon pairs in Au+Au, d+Au, and p+p collisions at
√
sNN

= 200 GeV. These balance functions are presented in terms of relative pseudorapidity, ∆η,

relative rapidity, ∆y, relative azimuthal angle, ∆φ, and invariant relative momentum, qinv.



In addition, balance functions are shown in terms of the three components of qinv: qlong,

qout, and qside.

Beam energy and reaction-plane-dependent balance functions are also discussed in this

paper. We will present charge balance function results for ∆η at
√
sNN = 7.7 to 200 GeV.

The normalized balance function width (W parameter) is employed to compare different

experimental measurements. The reaction-plane-dependent balance functions for Au+Au

collisions at
√
sNN = 200 GeV will be studied using the STAR detector. The reaction-plane-

dependent balance function analysis is consistent with the three particle correlator analysis

as expected mathematically. The model of Schlicting and Pratt incorporating local charge

conservation and elliptic flow can reproduce most of the three-particle azimuthal correlation

results at 200 GeV.
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Chapter 1

Introduction

1.1 Quantum ChromoDynamics

Throughout history, there is a fundamental question that has been asked: what is the smallest

building block of matter? How do these building blocks interact with each other? Our

best answer to this question to date is the Standard Model, which includes 12 fermions as

elementary particles and gauge bosons as force carriers. One missing piece from the Standard

Model is the Higgs boson. The Standard Model also assumes two major interactions between

particles - quantum electroweak and Quantum ChromoDynamics (QCD) [1].

QCD is a theory that describes the strong interactions of the quarks and gluons. It is

a non-abelian gauge field theory based on the SU(3) Yang - Mills theory of color-charged

quarks [2]. In contrast, quantum electrodynamics (QED) assumes that charged particles

interact by exchanging charge neutral particles. The non-abelian character of QCD does

allow the force carrier, in this case gluons, to carry gauge charges and to couple to themselves.

Thus two peculiar properties of QCD are generated: color confinement [3] and asymptotic
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Figure 1.1: A confining flux tube forms between distant quarks, which results in a constant
force as a function of distance. For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation.

freedom [4].

The spatial potential between strongly interacting quarks can be described as

Vs(r) = −4

3

αs

r
+ kr (1.1)

where r is the quark spacing, αs is the strong coupling constant and k is a constant that

describes the long range interactions. If quarks interact at short distances, the first term

dominates, which can be understood as the exchange of a single gluon. This results in a

1/r potential. However, as two quarks separate, due to the fact that gluons also carry color

charge and can interact with themselves, the gluon fields form narrow tubes of color charge

and cause a constant force between quarks as shown in Figure 1.1. This means that it would

require infinite energy to remove quarks from hadrons. In particle collisions, new quark -

antiquark pairs will spontaneously appear to break the tube and form new hadrons. Thus

quarks are always confined in hadrons.

Similar to the running coupling constant in QED, the renormalized QCD effective cou-
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Figure 1.2: Summary of measurements of αs as a function of the respective energy scale
Q [5].

pling constant αs(µ) depends on the renormalization scale. However, due to gluon self-

interaction, the dependence is different. Coupling constant αs(µ) can be written as αs(µ) ≡

g2s (µ)
4π ≈ 4π

β0 ln(µ2/Λ2)
, where Λ is the QCD scale and µ is the momentum transfer scale. When

β0 > 0, the coupling decreases logarithmically with increasing energy, which is known as

asymptotic freedom. Asymptotic freedom also suggests that the QCD can only be calculated

perturbatively for high momentum transfer interactions or over short distances. Figure 1.2

shows the measurements of αs as a function of the respective energy scale Q [5].
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1.2 Quark Gluon Plasma and the QCD Phase Diagram

Due to the color confinement, quarks can only move in the volume of a hadron at normal

temperature and density. However, in extreme high density and temperature conditions,

matter is compressed beyond a density where hadron boundaries overlap and merge. In this

case, color charges can be screened in a manner analogous to Debye screening for electric

charges. In this way, the distance over which the long-range interaction occurs is shortened

in a dense medium of charges. This screening effect results in the deconfinement of strongly

interacting particles that are now free to propagate through the dense matter. Therefore

the hadronic matter is transformed to a new state of matter called a Quark Gluon Plasma

(QGP). The transition from a hadronic state to a QGP is accompanied by an increase in

the (color) degrees of freedom, implying an increase in the entropy density and pressure

as the temperature increases. Figure 1.3 shows the equation of state from lattice QCD

calculations [6], obtained on temporal extent Nτ = 6− 10 lattices. The ratio of the pressure

over T 4 rises rapidly when the temperature goes above the critical temperature Tc ≈ 160

MeV, which indicate a phase transition from a hadronic matter phase to a QGP phase.

Current experiments at the Relativistic Heavy Ion Collider (RHIC) populate the region

of T < 2Tc, far from the Stefan-Boltzmann limits where the system has massless, weakly

interacting quarks and gluons. We should still expect strong interactions in the QGP created

experimentally.

Figure 1.4 shows the QCD phase diagram of nuclear matter as a function of temperature

and baryon chemical potential (µB). At low temperatures and for µB around 1 GeV, matter

exists in the regular hadronic state. If the temperature remains low but the µB increases,

ordered quark matter phases are predicted. When µB is very large, the quarks start to
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Figure 1.3: The pressure normalized by T 4 as a function of the temperature on Nt = 6, 8
and 10 lattices [6].

form Cooper pairs, resulting in a weakly interacting Fermi liquid of quarks called “color

superconductivity” [9]. This phase of matter is predicted to exist in the core of a neutron

star.

On the other hand, if the temperature is high and µB is relatively small, a deconfined

quark gluon plasma phase is expected. Both lattice QCD and experimental data indicate

this transition from hadronic matter to Quark Gluon Plasma is a analytical transition (cross-

over) [7], while some theoretical calculations predict that the transition at lower temperatures

and high µB is a 1st order phase transition [10]. If there exists a phase transition at higher

µB , with a cross-over at µB = 0, the phase transition would end in a critical point at

finite µB . However, due to the difficulty of lattice QCD calculations at finite µB, accurate

predictions of the critical point location are still lacking [11]. Therefore it falls to experiment

to search for traces of the existence of the critical point of QCD [12].
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1.3 Relativistic Heavy Ion Collisions

Currently, the only way to experimentally study the deconfined QGP is through heavy ion

collisions. Figure 1.5 shows the space-time evolution of a typical heavy ion collision. The

collision starts with two incoming nuclei traveling at nearly the speed of light. During the

first few fm/c of the collision, the system is dominated by hard processes like quark pair

production, jet production and fragmentation. With the evolution of interactions among

partons, the system reaches (local) equilibrium and forms a strongly interacting QGP. Due

to the strong internal pressure, the QGP expands and cools. Once its temperature drops

to around Tc, the phase transition from QGP to hadronic matter occurs (hadronization).

Since the phase transition is a cross-over, a mixed phase exists around Tc. When the system

cools further, the inelastic scattering stops and the relative ratios of different hadron species

are fixed (chemical freeze-out), and finally elastic interactions between particles stop and

the system comes to kinetic freeze-out. The final state particles then stream out and are

detected experimentally.

One unique feature of heavy ion collisions is the collision geometry. The left panel of

Figure 1.6 shows the collision of two Lorentz-contracted gold nuclei [8]. The Lorentz factor

is about 100 for
√
sNN = 200 GeV (100 AGeV in each direction), which makes the nucleus

appear as a flat disk in the laboratory frame of reference. The right panel shows the same

collision viewed along the beam pipe. The impact parameter, b, is defined as the distance

between the center of two nuclei in the plane transverse to their direction. Another variable

related to geometry is the number of participant nucleons, Npart, which is defined as the

number of nucleons that undergo at least one inelastic nucleon-nucleon collision. If a collision

occurs with the two nuclei almost overlapping with each other, one would expect a small
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Figure 1.5: Space-time evolution of a heavy ion collision. The figure is taken from Ref. [14].
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Figure 1.6: Geometry of a high-energy heavy-ion collision [8].

impact parameter and a large Npart. This is called a central collision. On the other hand,

if the overlapping volume is small, a peripheral collision with large impact parameter and

small Npart will occur. Experimentally, most QGP signals only exist in central collisions

where the system size is the largest.

Unfortunately, neither impact parameter nor Npart can be measured directly. One way to

determine the centrality is to combine Monte-Carlo simulations and experimental data. The

multiplicity of observed charged particles can then be correlated with centrality. One finds

that a larger multiplicity of charged particles corresponds to a more central collision. Using

the multiplicity, one can then determine the impact parameter and Npart using Glauber

model calculations [15, 16]. At STAR, the centrality is defined using “reference multiplicity”

and is grouped in increments of 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%,

60-70% and 70-80% of the total reaction cross section.

In non-central collisions, the overlap area of two nuclei is not symmetric. Instead, it has
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Figure 1.7: Illustration of the reaction plane definition.

10



a short axis in the transverse plane , which is parallel to the impact parameter, and a long

axis perpendicular to it. The reaction plane is defined by the impact parameter vector and

the momentum vector of the projectile as shown in Figure 1.7. Again, the true reaction

plane can’t be measured directly from data. But as discussed later, the event plane, which

is a good approximation of reaction plane, can be measured event by event via azimuthal

distributions of particle multiplicity [50, 17].
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Chapter 2

Particle Ratio Fluctuations and the

Charge Balance Function

2.1 Particle Ratio Fluctuations

As discussed in the previous chapter, one major challenge in relativistic heavy ion physics

is to understand the structure of the QCD phase diagram, i.e., locate the end point of the

first order phase transition line from the deconfined QGP phase to a hadronic gas phase.

Similar to the critical opalescence phenomenon in other second-order phase transitions, a

divergent susceptibility and a power-law decay of correlations should be observed near the

QCD critical point. Indeed, lattice QCD calculations have indicated large fluctuations near

the QCD critical temperature [18][19]. Figure 2.1 shows quadratic (χ2) and quartic (χ4)

derivatives of the QCD partition function with respect to baryon number, electric charge,

and strangeness chemical potentials in terms of the system temperature.

Experimentally, the divergence of susceptibility and increased fluctuations can be related
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to event-by-event fluctuations of a given observable. For example, K/π, p/π, and p/K

fluctuations could be related to strangeness fluctuations, baryon number fluctuations and

baryon-strangeness correlations [20] at mid-rapidity. The advantage of a ratio fluctuation is

that the volume fluctuation cancels out. One such observable, σdyn [21], is defined as the

difference of measured fluctuations between real data and mixed events.

σdyn = sgn(σ2
data − σ

2
mixed)

√
|σ2

data − σ
2
mixed| (2.1)

Here σdata is the relative width (standard deviation divided by the mean) of the event-by-

event particle-ratio distribution (K/π, p/π or p/K) calculated from the data. σmixed is the

same relative width calculated from mixed events. The mixed events are created by taking

no more than one track from each real event so that there are no correlations between tracks

in mixed events. The fluctuations of mixed events represents the statistical background

within the experimental acceptance. The subtraction of σmixed from σdata removes statistical

background and leave us with nonstatistical fluctuations only. Due to the definition of

our observable, it is possible to have σ2
data < σ2

mixed (for example, decay of ∆ → p + π

will introduce correlations between pions and protons and reduce the width of p/π ratio

distribution). We use sgn(σ2
data − σ2

mixed) to extract sign outside of the square root in

equation 2.1.

Another observable, νdyn, is also proposed [22] to study the deviation from Poisson

behavior. The observable νdyn for kaons and pions can be written as

14



νdyn,Kπ =
< K(K − 1) >

< K >2
+
< π(π − 1) >

< π >2
− 2 < Kπ >

< K >< π >
(2.2)

where K and π are the number of charged kaons and charged pions in each event and the

brackets represent event averages. If pions and kaons distribution are Poisson and indepen-

dent of each other, one would expect < NK(NK − 1) >=< NK >2, < Nπ(Nπ − 1) >=<

Nπ >
2 and < NKNπ >=< NK >< Nπ >, which will provide a zero νdyn. Thus, νdyn can

be used to study the deviation of fluctuations from Poisson behavior.

Although νdyn is calculated in a different way than σdyn, it represents that same dynam-

ical fluctuations. The advantage of νdyn is that it does not require the creation of mixed

events. A Poisson simulation also shows that νdyn provides more stable results compare to

σdyn if the statistics is limited. With enough statistics and and a sufficiently large denomi-

nator, it can be shown that νdyn ≈ σ2
dyn. A detailed study can be found in Ref.[57].

2.2 Balance Function

In a typical central collision of two gold nuclei at RHIC, thousands of particles are produced.

Most of these charged particles are created during the dynamical evolution of the hot and

dense media. Due to local charge conservation, charges are pair produced close to each other

in space and time. The charged pairs are then pulled apart by diffusion and interactions

while the system is expanding. Hence the study of correlations between opposite-sign charge

pairs provides a unique tool to probe the properties of the hot dense matter created at

RHIC. One such observable, the balance function, is sensitive to the correlation of balancing
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charges.

In general, the balance function can be written as [24].

B(p2|p1) ≡ 1

2
{ρ(b, p2|a, p1)− ρ(b, p2|b, p1) + ρ(a, p2|b, p1)− ρ(a, p2|a, p1)} (2.3)

where ρ(b, p2|a, p1) is the conditional probability of seeing particle b in condition p2 given

condition that particle a is in condition p1. A like sign subtraction is applied to study only

the balancing charges. Therefore the balance function can be used to study the conditional

probability of a particle in condition p1 being accompanied by an opposite-sign charge in

condition p2.

Experimentally, the conditional probability ρ(b, p2|a, p1) can be calculated via

ρ(b, p2|a, p1) =
N(b, p2|a, p1)

N(a, p1)
(2.4)

where N(b, p2|a, p1) is the number of pairs that satisfy both conditions and N(a, p1) is the

number of particles in p1. A simplified version of balance function refers to p1 as detecting

a particle anywhere inside the detector and p2 as having a relative pseudorapidity ∆η (or

∆φ, ∆y, etc.) with respect to the first particle. For example, the balance function for ∆η

can be written as [25].

B(∆η) =
1

2

{
N+−(∆η)−N++(∆η)

N+
+
N−+(∆η)−N−−(∆η)

N−

}
(2.5)
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Specifically, N+−(∆η) denotes the number of charged particle pairs in a given pseudorapid-

ity range ∆η = |η(+) − η(−)|, which is calculated by taking in turn each positive particle

in an event and incrementing a histogram of ∆η with respect to all the negative particles

in that event. The distribution N+−(∆η) is then summed over all events. A similar pro-

cedure is followed for N++(∆η), N−−(∆η), and N−+(∆η). Also N+(−) is the number of

positive(negative) particles integrated over all events.

Balance functions are sensitive to the mechanisms of charge formation and the subsequent

relative diffusion of the balancing charges [58]. The idea is that in heavy ion collisions, most

of the final state charges are created during the dynamical evolution of the system, due to

local charge conservation, particles and their antiparticles are pair produced, so they are

correlated initially in coordinate space. If hadronization occurs early, the created charge

pairs would be expected to separate in rapidity due to expansion and rescattering in the

strongly interacting medium. However, if a deconfined system of quarks and gluon is created

during the collision, the observed balancing charges are then created when the deconfined

system hadronizes, which reduces the effects of expansion and diffusion on the correlation of

the balancing charges. The same arguments were used in discussing charge fluctuations [23].

The narrowing of the balance function in central collisions implies high degree of correlation

in coordinate space. This has been postulated as a signal for delayed hadronization [58],

which would not allow charges the opportunity to separate in coordinate space.

Balance functions are also affected by the freeze-out temperature and by radial flow

[59]. Remarkably, balance functions for central collisions have been shown to be consistent

with blast-wave models where the balancing charges are required to come from regions with

identical collective flow [61]. It has been previously presented that balance functions from
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Au+Au collisions at
√
sNN = 130 GeV for all charged particles and for identified charged

pions [26] narrow in central Au+Au collisions. In the following chapter we discuss further

studies at additional incident energies.

The width of the balance function can be used to gain insight into the correlation between

balancing charge pairs. The authors of Ref. [61] made the point that the observed width of

the balance function in terms of relative rapidity, σy, is a combination of the rapidity spread

induced by thermal effects, σtherm, and the separation of the balancing partners of the

charge/anti-charge pair in coordinate space. The authors of Ref. [58] stated this relationship

as σ2
y = σ2

therm + 4β ln (τ/τ0), where β is a diffusion constant, τ is the proper time after

the initial collision when the charge/anti-charge pair is created, and τ0 is a characteristic

time on the order of 1 fm/c. After the initial collision, the width of the balance function

decreases because the thermal width narrows as a result of cooling, while diffusion tends

to increase the width of the balance function. If production of the charge/anti-charge pairs

occurs at early times, then scattering and expansion affects the partners of the charge/anti-

charge pair during the entire lifetime of the system. The diffusion term is then large and

significantly broadens the observed balance function. If the production of charge/anti-charge

pairs occurs late, the time during which the partners of the charge/anti-charge pair are

exposed to scattering and expansion is small, which makes the effect of diffusion negligible.

Thus, in the case of late production of the charge/anti-charge pairs, the width of the balance

function is determined by the thermal width.
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2.3 Models

Due to the difficulty of lattice QCD calculations, semi-classical models have been generally

applied as tools to investigate the collision dynamics of relativistic heavy-ion collisions. Two

major types of models, hydrodynamical/statistical models and microscopic transport models,

are used in this paper.

Hydrodynamical models start from the very basic physical principles of energy and mo-

mentum conservation [27]. A typical hydrodynamical model assumes local thermal equilib-

rium and neglects viscosity. Initial conditions are provided by outside sources. Once the

initial conditions and the equation of state (EoS) are known, the expansion of the fluid is

determined by hydrodynamic equations. As the system expands, at some point, the energy

density become so low that local thermal equilibrium can no longer be maintained. That

is the point where the hydrodynamic evolution is stopped. The freeze-out prescription are

then calculated through other methods like transport models.

At the end of expansion, hydrodynamical quantities are then linked to other methods to

generate the final state observables.

Unlike hydrodynamical models that require input about initial and final state interac-

tions, transport models deal with the entire time evolution of the heavy-ion collisions by

modeling its microscopic constituents and their interactions. Most transport models are

based on quantum molecular dynamics or solutions of the Boltzmann transport equation

(BTE). The system’s degrees of freedom are chosen to be baryons and mesons in the case

of hadronic transport models or quarks and gluons in the case of parton cascades. Because

microscopic transport models don’t assume local thermal equilibrium, they are useful for the

study of fluctuations and equilibration mechanisms.
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2.3.1 UrQMD

The Ultra-relativistic Quantum-Molecular-Dynamics (UrQMD) model is a microscopic model

used to simulate p+ p, p+A and A+A interactions at relativistic energies ranging from Be-

valac and SIS energies (1 AGeV) up to the Alternating Gradient Synchrotron (AGS) (10

AGeV), the Super Proton Synchroton (SPS) (160 AGeV) and RHIC [28, 29]. The main

goals of the model are to gain understanding about the following physical phenomena within

a single transport model [30]:

• Creation of dense hadronic matter at high temperatures

• Properties of nuclear matter, ∆ & Resonance matter

• Creation of mesonic matter and of anti-matter

• Creation and transport of rare particles in hadronic matter

• Creation, modification and destruction of strangeness in matter

• Emission of electromagnetic probes

The UrQMD model is based on the covariant propagation of all hadrons on classical

trajectories in combination with stochastic binary scatterings, the excitation and fragmenta-

tion of color strings, and the formation and decay of hadronic resonances. At higher energies

more sub-hadronic degrees of freedom are introduced by the introduction of a formation time

for hadrons produced in the fragmentation of strings and by hard (pQCD) scattering via

the PYTHIA model [31]. The UrQMD model is a hadronic transport model that does not

incorporate a phase transition from hadronic matter to deconfined quark-gluon matter.
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Throughout this paper, the UrQMD model is used as a hadronic reference for comparison

with experimental data. We use version 3.3 and all parameters are set to default settings.

2.3.2 HIJING

HIJING [32], heavy-ion jet interaction generator, is a Monte Carlo event generator used to

study jet and multi-particle production in high energy p + p, p+A, and A+A collisions. It

combines the pQCD approach of PYTHIA with low pt multi-string phenomenology. The

main features included in HIJING are: [33]

• Multiple minijet production with initial and final state radiation

• Nuclear shadowing of parton distribution functions

• A schematic mechanism of jet quenching in hot dense matter

2.3.3 Thermal Blast-wave Model

Unlike transport models that deal with the complete dynamic evolution of the system created

in heavy-ion collisions, blast-wave models are used to study the kinetic freeze-out properties

of the system. A conventional single-particle blast wave model assumes that particles are

locally thermalized at a kinetic freeze-out temperature and are moving with a common

collective transverse radial flow velocity field. The system can be described as [74]

dN

d3pd4x
∝ exp(−

pµuµ(x)

Tkin
)χS(x) (2.6)
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where the parameters are the freeze-out surface characteristic function χS(x), the collec-

tive velocity uµ(x) and the kinetic freeze-out temperature Tkin. These parameters can be

determined by fitting to transverse momentum spectra and elliptic flow data.

In this paper, a modified single particle blast wave model is applied to compare with

STAR balance function data. In this model, an ensemble of particles with exactly conserved

charges are generated. The particles are then assigned flow velocities according to the single

particle blast-wave model parameterization with the additional requirement that they are

emitted close to each other in space and time. This modification enforces local charge

conservation inside the model, which is important for the study of correlations between

charge pairs. A detailed description of the model can be found at Ref. [74].
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Chapter 3

Experimental Setup

3.1 The Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider (RHIC) [34], located at Brookhaven National Laboratory

(BNL), Upton, NY, is an experimental facility capable of colliding both heavy ions and

polarized protons. An aerial view of RHIC is shown in Figure 3.1. The accelerator chain

includes the Tandem Van de Graaff, the Booster, the AGS, and the RHIC main rings. A

proton linac is used as the source of polarized protons. RHIC is a super-conducting collider

comprised of two concentric storage rings in a tunnel 3.8-km in circumference with the blue

ring designed for clockwise beam and the yellow ring designed for counter-clockwise beam.

RHIC has six interaction regions where the beams can be collided head-on.

At RHIC, the heavy ion acceleration process starts at the Tandem. A cesium sputter

ion source injects negatively charged gold ions into the Tandem Van de Graaff. They are

partially stripped of their electrons to a positive charge state using a thin carbon foil at the

terminal, and then accelerated to an energy of 1 AMeV by the second stage of the Tandem.
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Figure 3.1: Aerial view of the Relativistic Heavy Ion Collider (RHIC).

At the exit of the Tandem, gold ions are further stripped and then selected by bending

magnets, resulting in a beam of charge state +32 gold ions, which are accelerated to 95

AMeV inside the Booster Synchrotron. When exiting the booster, ions are stripped again

to charge state of +77 and injected into the AGS. The AGS accelerates the gold ions to an

energy of 10.8 AGeV and fully strips the gold ions to a charge state of +79. After that,

beams are injected into the RHIC rings through the AGS-to-RHIC Beam Transfer Line.

Thanks to the two concentric but completely independent rings and two sources of ions,

many different kinds of collisions are possible at RHIC. Table 3.1 shows the different collision

energies and systems RHIC has run to date. Collisions of both equal species of ions (Au+Au

, Cu+Cu, and p + p) and unequal species of ions (d+Au) have been performed at RHIC.

Although each ring at RHIC is designed to operate at a top energy of 100 AGeV (
√
sNN =

200 GeV) for heavy ions and 250 GeV (
√
s = 500 GeV) for protons, it can provide collisions
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at a variety of lower energies. RHIC has also been run by injecting gold ions at energies

lower than the normal injection energy of
√
sNN = 19.6 GeV without ramping the RHIC

rings. Energies down to
√
sNN = 7.7 GeV have been produced at RHIC.

In this paper, we discuss particle-ratio fluctuations and charge balance function results

from different RHIC runs. Specifically, Chapter 5 and Section 6.2 analyzes Run 10 and 11

Au+Au data from
√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV. Section 6.1 analyzes

Run 7 Au+Au results at 200 GeV, Run 2 p+ p results at 200 GeV, Run 3 d+Au results at

200 GeV. Section 6.3 analyzes Run 10 Au+Au 7.7, 11.5, 39 and Run 4 Au+Au 62, 200 GeV

data. Section 6.4 analyzes Run 10 Au+Au 200 GeV data.

3.2 The STAR Experiment

Among RHIC’s six interaction regions, there are four experiments [37], BRAHMS (Broad

RAnge Hadron Magnetic Spectrometers), PHENIX (Pioneering High Energy Nuclear In-

teractions eXperiment), PHOBOS, and STAR (Solenoidal Tracker At RHIC) located at

positions around the RHIC ring of 2 oclock, 8 oclock, 10 oclock and 6 oclock, respectively.

BRAHMS and PHOBOS have completed their experimental programs and are no longer

operational.

The STAR experiment is a multiple detector system constructed to study the properties

of quark-gluon plasma created at RHIC [38]. Figure 3.2 shows a perspective view of STAR’s

current configuration during Runs 10 and 11 (forward time projection chamber [FTPC]

not included) while Figure 3.3 shows a cross-sectional view of STAR from previous runs.

Located in the center of STAR is a 5-cm radius beam pipe. It is made of beryllium in the

|z| < 50 cm region and changes to aluminum for |z| > 50 cm. Immediately surrounding the
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Run Year Species
√
sNN (GeV) Delivered luminosity

1 2000 Au+Au 56 < 0.001 µb−1

Au+Au 130 20 µb−1

2 2001/2002 Au+Au 200 258 µb−1

Au+Au 19.6 0.4 µb−1

polarized p+ p 200 1.4 pb−1

3 2003 d+Au 200 73 nb−1

polarized p+ p 200 5.5 pb−1

4 2004 Au+Au 200 3.53 nb−1

Au+Au 62.4 67 µb−1

polarized p+ p 200 7.1 pb−1

5 2005 Cu+Cu 200 42.1 nb−1

Cu+Cu 62.4 1.5 nb−1

Cu+Cu 22.4 0.02 nb−1

polarized p+ p 200 29.5 pb−1

polarized p+ p 409.8 0.1pb−1

6 2006 polarized p+ p 200 88.6 pb−1

polarized p+ p 62.4 1.050 pb−1

7 2007 Au+Au 200 7.25 nb−1

Au+Au 9.2 small

8 2008 d+Au 200 437 nb−1

polarized p+ p 200 38.4 pb−1

Au+Au 9.2 small

9 2009 polarized p+ p 500 110 pb−1

polarized p+ p 200 114 pb−1

polarized pp2pp 200 0.6 nb−1

10 2010 Au+Au 200 10.3 nb−1

Au+Au 62.4 544 µb−1

Au+Au 39 206 µb−1

Au+Au 7.7 4.23 µb−1

Au+Au 11.5 7.8 µb−1

11 2011 polarized p+ p 500 166 pb−1

Au+Au 19.6 33.2 µb−1

Au+Au 200 9.79 nb−1

Au+Au 27 63.1 µb−1

Table 3.1: Summary of RHIC operating modes and total integrated luminosity delivered to
6 experiments. [36]
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beam pipe is the inner tracking system comprised of the Silicon Vertex Tracker (SVT) [39]

and Silicon Strip Detectors (SSD) [40]. The SVT has three cylindrical layers located 7, 11

and 15 cm from the beam axis with a total of 216 silicon drift detectors, while the 4th

layer is the SSD. Outside the SSD is the Time Projection Chamber (TPC), which acts as

the main tracking and particle identification detector in STAR. The TPC is a barrel gas

detector 420 cm in length, 50 cm (inner) and 200 cm (outer) in radius with full azimuthal

coverage and a pseudo-rapidity range of |η| < 1.8 (uniform acceptance within |η| < 1.0

). To enhance STAR’s particle identification capability, a barrel Time of Flight detector

(TOF) is also installed outside the TPC. The TOF consists of a total of 120 trays that

cover the full azimuth and have a pseudo-rapidity range |η| < 0.9. Outside the TOF is

the barrel electromagnetic calorimeter (BEMC) [41], a lead-scintillator sampling calorimeter

that also covers the full azimuth and has a pseudo-rapidity range of |η| < 1.0. All the

detectors mentioned above are installed inside a room temperature solenoidal magnet, which

generates a uniform magnetic field of 0.25 T to 0.50 T.

In the forward region, STAR also has multiple detectors. A pair of Forward Time Pro-

jection Chamber (FTPCs) [42] with full azimuthal coverage and a pseudo-rapidity range

2.5 < |η| < 4 are installed on both sides of STAR serving as the forward tracking detectors.

An endcap electromagnetic calorimeter (EEMC) [43] covers 1.09 < η < 2. The Beam-Beam

Counters (BBCs), which are 3.75 meters away from the center of STAR, are two sets of scin-

tillator rings installed around the RHIC beam pipe. The BBCs are used as trigger detector

for STAR low energy runs. Another trigger detector is the Zero-Degree Calorimeter (ZDC).

The ZDCs are installed at the first bending magnets in the collider line and use layers of

lead and scintillator to detect mainly spectator neutrons. The ZDCs are used for minimum
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Figure 3.2: A perspective view of the STAR detector.[46]

bias trigger, which is the major trigger used for this paper.

During the time period of 2007 to 2011, there were some significant changes in STAR’s

detector configuration, among them two changes affecting the analysis in this paper. First,

the SVT and the SSD along with their utility lines were completely removed from STAR

after the completion of Run 7 in 2008. The reduction of material inside the TPC reduced the

low pt background particles. Second, the TOF detector, which improved STAR’s particle

identification capability at high momenta, was fully installed after Run 9 in 2010. The lower

amount of material combined with the full TOF installation makes Runs 10 and 11 ideal for

identified particle analysis.
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Figure 3.3: a cross-section view of the STAR detector.

3.2.1 The STAR Time Projection Chamber

The TPC, which acts as the main tracking detector at STAR, is a gas detector capable of

recording tracks of particles, measuring particle momentum, and performing particle identi-

fication using the particles’ ionization energy loss (dE/dx) [44] combined with the measure-

ment of the magnetic rigidity. Figure 3.4 shows the schematic of STAR TPC. The detector

volume is filled with P10 gas (10% methane, 90% argon) held at 2 mbar above atmospheric

pressure. This slight over-pressure is designed to ensure that air does not contaminate the

P10 in the detection volume.

When a particle travels through the TPC gas volume, it ionizes gas molecules along its

path. The ionized electrons then drift to the readout end caps under an uniform electric

field of ≈ 135 V/ cm with direction parallel to the beam pipe. The electric field is generated

by the central membrane, concentric field-cage cylinders and the readout end caps. At both

29



Figure 3.4: STAR TPC [44].
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ends of the TPC, multi-wire proportional chambers (MWPC) with readout pads are used as

the readout system. The high fields close to MWPC’s anode wires cause drifting electrons to

avalanche, which provides an amplification of 1000 - 3000 . The read-out pads are arranged

in 12 sectors, with each sector contain a inner sub-sector and outer sub-sector. A total

of 136,608 pads are used for read-out. Induced charge on the pads from the avalanche is

then measured by FEE cards. Each FEE card contain 32 channels. The FEE cards are

then supported by 144 larger readout boards (RDOs) [45], which provide power and control

signals, read out the data. Due to a low voltage power supply issue during RHIC Run 10,

a significant amount of RDOs were masked out at various times during the run. Therefore

a dead RDO number cut will be discussed later to minimize impact of the missing RDO

boards.

The TPC tracking starts by finding ionization clusters along the track. The clusters

drift towards two ends of TPC and are measured by read-out pads. Each cluster’s x and y

coordinates are measured by the position of read-out pads that have induced charge while the

z coordinate is measured by the drift time. The measured space points are then associated

together to form a track. Once a track is formed, a model is used to fit the points and

extract momentum information. The major factors affecting the total tracking efficiency

are the imperfect acceptance due to sector boundaries, hardware failure from run to run

(masked out RDOs), and two-track separation resolution. Figure 3.5 shows the the pion

reconstruction efficiency as a function of transverse momentum.
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Figure 3.5: The pion tracking efficiency from Au+Au events. Only tracks with |y| < 0.7 are
used and the magnetic field is 0.25 T [44].
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3.2.2 The STAR Time-of-Flight Detector

Although the TPC has a large uniform acceptance and good momentum measurement ca-

pability, its particle identification capability is limited by the dE/dx method. It is difficult

to identify particles with momentum above 0.7 GeV/c because the energy loss is less mass-

dependent for high pt particles [44]. About 30% of the total charged hadrons in an event

cannot be identified. Therefore, the TOF detector is applied to enhance STAR’s particle

identification capability [47].

The basic idea of the TOF detector system is to precisely measure the flight time of a

charged particle when traveling between two space points. The start time is determined by

two upgraded pseudo-vertex position detectors (upVPD) and the stop time is determined by

TOF barrel itself. Each upVPD has 19 detector channels of photomultiplier tubes (PMT)

with scintillators and is mounted close to the beam pipe (Figure 3.2). The upVPDs are

sensitive to spectators from collisions and can be used to determine the start time as well

as the vertex position (time difference between the two upVPDs). The TOF barrel is a

cylindrical shell consisting of 120 trays that cover the full azimuth and a pseudo-rapidity

range of approximately |η| < 0.9. A total of 3840 Multi-gap Resistive Plates (MRPC) are

used to construct the TOF barrel [48].

The TOF particle identification is done by combining information from both TPC and

TOF. All TOF hits are matched to TPC reconstructed tracks. With the flight time ∆t from

TOF and path length ∆s from TPC, the particle velocity can be calculated via

1

β
= c

∆t

∆s

Furthermore, with the momentum determined by TPC, we can calculate the mass of the
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Figure 3.6: The TOF matching efficiency [49].

charged particle [47]

m =
p

γβc
=
p
√

1− β2

βc
=
p

c

√
(
1

β
)2 − 1

Since the TOF particle identification (PID) requires TPC tracks, the matching efficiency

of TPC tracks to TOF hits is important for TOF particle identification. Figure 3.6 shows

the TOF matching efficiency for identified pions, kaons, and protons in terms of transverse

momentum pt. The efficiency is about 70% in the high pt region and drops dramatically for

low pt particles.

For RHIC low energy runs during Runs 10 and 11, due to the relatively low efficiency

of upVPDs, the TOF detector is analyzed in start-less mode: A self-calibration algorithm
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is applied to the TOF calibration so the upVPD information is not required for flight time

determination. In this paper, the 7.7, 11.5, and 39 GeV Au+Au TOF data and 19.6 GeV

Au+Au TOF data from Run 11 are calibrated using this start-less mode.
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Chapter 4

Analysis Method

4.1 Event and track selection

Throughout this thesis, minimum-bias data sets were used from RHIC Runs 4, 7, 10 and 11.

The centrality of each collision was determined according to the measured charged hadron

multiplicity within the pseudorapidity range |η| < 0.5 (reference multiplicity).The centrality

bins were calculated as a fraction of the reference multiplicity distribution starting with

the highest multiplicities (most central) to the lowest multiplicities (most peripheral). Nine

centrality bins were used: 0-5%, 5-10%,10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%,

and 70-80%.

To ensure nearly uniform detector acceptance and avoid multiplicity biases near the edges

of the TPC, cuts were made on the z position of the reconstructed primary vertex. These

cuts are listed in Table 4.1 for each experimental run. In addition, the radial position of the

primary vertex was required to be less than 2 cm for Runs 10 and 11. This radial cut is

more important in RHIC’s low energies runs where the beam spot was relatively large and
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Run Year
√
sNN (GeV) Kind |z| (cm) No. of Events (millions)

4 2004 62.4 Au+Au 30 8
4 2004 200 Au+Au 30 14
7 2007 200 Au+Au 10 28
10 2010 200 Au+Au 30 33 (220 for Chapter 6.4)
10 2010 62.4 Au+Au 30 17
10 2010 39 Au+Au 30 10
10 2010 11.5 Au+Au 50 16 (4 for ratio fluctuation)
10 2010 7.7 Au+Au 70 4 (3 for ratio fluctuation)
11 2011 19.6 Au+Au 30 15
11 2011 27 Au+Au 30 29

Table 4.1: Summary of data sets, primary vertex cuts, and the number of good events used
in the analysis.

the beam pipe events were a large source of background.

Standard STAR track quality cuts were used. Only tracks having more than 15 hits out

of a maximum of 45 measurable space points along the trajectory were considered as good.

The ratio of the numbers of reconstructed space points to possible space points along the

track was required to be greater than 0.52 to avoid the effects of track splitting. Tracks in

the TPC were characterized by the distance of closest approach (DCA), which is the distance

between the projection of the track at its closest point to the measured event vertex. Particles

originating from weak decays can have larger DCAs than the direct primary particles. All

tracks were required to have a DCA of less than 3 cm.

4.2 Particle identification

Particle identification was accomplished with both STAR’s TPC and TOF detectors. A

charged particle’s trajectory is deflected by the external magnetic field while traveling inside

the TPC gas volume so the magnetic rigidity can be used to determine the particle’s momen-
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Figure 4.1: Upper: m2 vs. p for all charged particles and identified kaons, pions, and protons
using TOF PID. Lower: dE/dx vs. p for all charged particles and identified kaons, pions
and protons using TPC PID.

tum. Also, the charged particles interact with the gas and lose energy by ionizing electrons

of the gas atoms. This specific ionization energy loss, dE/dx, is a function of the parti-

cle momentum and species. The TOF measures the particle’s flight time precisely, which is

combined with the momentum measurement from the TPC to provide particle identification.

Due to the fact that the TOF has excellent particle identification capability but relatively

low efficiency, a combined identification method is applied to achieve the maximum efficiency

and accuracy. If a particle has a TOF match, we use the particle’s velocity β extracted

from the time-of-flight, otherwise we switch to the TPC and use its dE/dx to make the

identification. Figure 4.1 shows m2 vs. p for all charged particles and identified kaons, pions
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and protons using TOF PID, as well as dE/dx vs. p for all charged particles and identified

kaons, pions and protons using TPC PID. For TOF PID, the m2 method is used, which can

be written as

m2 =
p2

γ2β2
= (

1

β2
− 1)p2 (4.1)

where the β is extracted from the TOF and the momentum information is taken from

the TPC. The benefit of this m2 method is that it does not depend on momentum so

the mean value of each mass distribution should be constant as a function of momentum.

The disadvantage is that the method uses the momentum from TPC so the identification

uncertainty depends on momentum. In this analysis, we used Gaussian fits to all three

mass peaks at each momentum bin, extracted the width from the fits, and only kept tracks

that are less than two standard deviations away from the expected m2 value. A hard cut of

0.6 < m2 < 1.1 is also applied to the proton mass peak due to its relatively wide distribution.

For identified pions and kaons, we use a momentum cut of pt > 0.2 GeV/c and p < 1.6

GeV/c, while for protons, we increase the lower cut to pt < 0.4 GeV/c to reduce the number

of background protons knocked out from the beam pipe and the detector materials. A p < 3

GeV/c upper cut is also used to improve the separation of kaons and protons (compared to

pions and kaons) in the high momentum region.

Similarly, for TPC PID, we required that the specific energy loss be less than two standard

deviations away from the energy loss predicted for the desired particle species, and would

also be more than two standard deviations away from the energy loss predicted for the other

particles. In addition, electrons were excluded from the analysis for all cases by requiring
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that the specific energy loss for each track was more than one standard deviation away from

the energy-loss predictions for electrons. Due to the relatively low resolution of TPC, the

pt cut for TPC PID is 0.2 < pt < 0.6 GeV/c for pions and kaons, while for protons it is

0.4 < pt < 1.0 GeV/c.

It should be noted that TOF was only fully installed after year 2009 at RHIC, so through-

out this analysis, only Run 10 and 11 data use TPC+TOF PID methods, Run 4 and 7 use

TPC as the only particle identification detector.

4.3 Event plane method

In practice the reaction plane angle for a given collision is not known. However, the event

plane, which can be calculated from the particle azimuthal distributions, can be used as an

estimation of reaction plane. As discussed in Ref.[50], event plane is calculated by

Qn cos(nψn) = Xn =
∑
i

wi cos(nφi) (4.2)

Qn sin(nψn) = Xn =
∑
i

wi sin(nφi) (4.3)

ψn = (tan−1

∑
i
wi sin(nφi)∑

i
wi cos(nφi)

)/n (4.4)

whereQn is the event flow vector and ψn is the event plane angle from the nth harmonic of the
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Figure 4.2: Reconstructed TPC event plane distribution after pt and φ weighting. The data
are from 30-40% centrality, Run 4 Au+Au collision at

√
sNN = 200 GeV.

distribution. The φi is the azimuthal angle of the ith particle and wi are weights optimized

to make the reaction plane resolution as high as possible. In this particular analysis, we use

the second order event plane to take advantage of the large elliptic flow measured at RHIC.

A transverse momentum weighting is also applied to maximize event plane resolution, where

we use the particles pt up to 2.0 GeV/c as the weight wi.

In a case of a perfect detector where the azimuthal acceptance and efficiency is uniform,

the azimuthal distribution of the event plane should be identical in all directions. However,

things like TPC sector boundaries and malfunctioning electronics can cause a finite accep-

tance and non-uniform detection efficiency, which can result in a non-flat distribution of the

event plane angle and bias the final analysis results. To flatten the event plane distribution,
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Figure 4.3: TPC event plane resolution for
√
sNN = 200 GeV Au+Au MinBias collisions.

a φ weight is also folded into the wi of Equation 4.2, 4.3 and 4.4. The φ weighting is done

by inverting the φ distributions of all selected tracks for a given number of events. In this

analysis, we use a run by run and centrality by centrality φ weighting to deal with different

detector acceptance and efficiency in long runs and different centralities. When filling the φ

distribution histogram, we weight with each track’s pt to maximize the event plane resolu-

tion. Figure 4.2 shows the event plane azimuthal distribution after φ weighting is applied.

The data are from Run 4’s Au+Au collisions at
√
sNN = 200 GeV, only 30-40% centrality is

shown. A constant fit of this azimuthal distribution gives χ2/ndf= 498.3/479 ≈ 1, indicating

a flat event plane azimuthal distribution.

Due to finite particle multiplicity, there are always differences between the measured

event plane and the real reaction plane. This finite event plane resolution causes differences
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between the observed event plane dependent balance function and the real one. To correct

for this resolution, an event plane resolution factor is used as [50]

< cos[2(ψ2 − ψr)] >=

√
π

2
√

2
χ2 exp(−χ2

2/4)× [I0(χ2
2/4) + I1(χ2

2/4)] (4.5)

where ψ2 is the second harmonic event plane calculated from the azimuthal distribution of

the TPC tracks, χ2 ≡ v2/σ and I1 is the first order modified Bessel function. In practice, a

sub-event method is applied to calculate the event plane resolution by dividing the full event

into two random sub-events and calculating the event plane angles in both events. If there

are no other correlations, or if the correlations are negligible compared to the flow signal,

the resolution of each of them can be calculated via

< cos[2(ψa2 − ψr)] >=
√
< cos[2(ψa2 − ψ

b
2)] > (4.6)

Once we have each sub-event,s resolution, we can use Equation 4.5 to extract their χa2.

Because χ2 ≡ v2/σ is proportional to the square root of the event multiplicity
√
N , we can

calculate the full event’s χ2 =
√

2χa2 and use Equation 4.5 again to calculate the full event

resolution.

Figure 4.3 shows the centrality dependence of the TPC event plane resolution for STAR

Run 4 Au+Au collisions at
√
sNN = 200 GeV. The resolution is relatively low in peripheral

collisions due to low multiplicity and also low in the most central bin due to less anisotropic

flow.
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4.4 Mixed and Shuffled Events

As discussed in Section 2.1, the dynamical fluctuation σdyn is given by

σdyn = sgn(σ2
data − σ

2
mixed)

√
|σ2

data − σ
2
mixed|

Note that mixed events are required to extract σdyn. For balance function analysis, TPC

sector boundaries introduce different acceptance for positive and negative charge particles.

A mixed events subtraction is necessary to correct for this different acceptance.

Mixed events are created by taking one track from each event, selected according to

the bin in centrality and the bin in event vertex position. One single mixed event includes

no more than one track from any observed event. This new mixed-event data set has the

same number of events and the same multiplicity distribution as the original data set but

all correlations are removed.

For balance function calculations, shuffled events are also created. These shuffled events

are produced by randomly shuffling the charges of the particles in each event. The shuffled

events thus have all the momentum correlations and the same total charge observed in

the original event, but the charge momentum correlations are removed. Because shuffling

uniformly distributes a particles balancing partner across the measured phase space, balance

functions calculated using shuffled events can be used to gauge the widest balance functions

that one can measure using the STAR acceptance for the system under consideration.
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Chapter 5

Results for Fluctuations

5.1 K/π, p/π and p/K fluctuations

Figure 5.1 shows νdyn,Kπ results plotted in terms of the number of participating nucleons

from Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. νdyn,Kπ is positive and

decreases with increasing number of participating nucleons. A UrQMD model calculation

with STAR acceptance cuts is shown in the same figure. The UrQMD results have the same

trend as the data but over predict the magnitude for all four energies.

Figure 5.2 shows the measured p/π fluctuations in terms of the number of participating

nucleons from Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. Here p is the sum

of protons and anti-protons. Unlike νdyn,Kπ, the νdyn,pπ result is negative and increases

with increasing number of participating nucleons. The negative value of νdyn means the

cross-correlation terms dominate, which could be due to the proton-pion correlation from

resonance decay (e.g. ∆ → p + π). The UrQMD model with STAR acceptance cuts agrees

well with data at 7.7 GeV, but over predicts the data at higher energies and in peripheral
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collisions.

Figure 5.3 shows νdyn,pK results plotted versus the number of participating nucleons from

Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. For all four energies shown here,

the data show a smooth decrease with decreasing number of participating nucleons. For

39 GeV and 200 GeV, the data show smaller centrality dependence and νdyn,p/K changes

from negative to positive values at peripheral collisions, which implies enhanced fluctuations

at peripheral collisions. The UrQMD model with STAR acceptance cuts over predicts the

magnitude, especially for peripheral collisions.
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collisions, 0-5% centrality, only statistical errors are shown, while NA49 results (blue squares)
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√
sNN (GeV) < K > < π > < p >

200 38.66 468.47 29.27
62.4 32.77 395.70 25.95
39 29.65 369.41 25.91
27 27.58 348.20 26.86

19.6 25.15 317.24 28.83
11.5 19.27 243.52 33.44
7.7 14.25 185.47 40.23

Table 5.1: Identified particle numbers used in the νdyn calculation, 0-5% centrality only.
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The energy dependence of particle-ratio fluctuations is also a interesting topic. Previous

results from NA49[51] and STAR[52] show that for K/π fluctuations, σdyn is constant from

RHIC to top SPS energies but rises strongly at lower SPS energies. This increase of fluctua-

tion at low SPS energies could indicate the onset of deconfinement at RHIC top energies. Fig-

ure 5.4 shows the σdyn results using STAR’s new 7.7, 11.5, 39, 62.4, 200 GeV data from Run

10 and 19 and 27 GeV data from Run 11. Note here the STAR results (data and UrQMD)

are calculated via νdyn and converted to σdyn using the relation σdyn = sgn(νdyn)
√
|νdyn|.

STAR results (red stars) are approximately independent of collision energy at a level of

about 2%. This disagrees with NA49’s results (blue squares), which show a strong increase

with decreasing incident energy. Table 5.1 shows the identified particle numbers used in this

analysis, while the NA49 numbers can be found at Ref. [55].

The same figure also shows model calculations. The points labeled STAR UrQMD rep-

resent a UrQMD calculation with STAR acceptance cuts while the points labeled NA49

UrQMD show a UrQMD calculation with NA49 acceptance cuts applied. These two UrQMD

results agree well with each other, which indicates σdyn,Kπ should be independent of experi-

mental acceptance differences between the two experiments. Both UrQMD calculations show

little energy dependence and over predict the magnitude of the data. The triangles in Fig-

ure 5.4 are statistical hadronization model results from Torrieri [53]. The magenta triangles

stand for the chemical equilibrium model with light quark phase space occupancy γq = 1,

while the green triangles show the chemical non-equilibrium model in which the value of γq

if varied to reproduce the K+/π+ yield ratios from RHIC to SPS energies. The equilibrium

model agrees well with the data at high incident energies, but slightly under predicts the

data at SPS energies. The non-equilibrium model over predicts the fluctuations at all en-
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ergies. None of the models presented here fully describe the incident energy dependence of

the data.

Unlike the results for K/π fluctuations, the results for p/π fluctuations are affected by

resonance correlations (e.g. ∆,Λ,Σ all decay to p, π). These correlations increase the cross-

correlation terms of νdyn and produce a negative νdyn value. Figure 5.5 shows the incident

energy dependence of σdyn, again STAR results (data and UrQMD) are calculated via νdyn

and converted to σdyn using the relation σdyn = sgn(νdyn)
√
|νdyn|. Unlike the results for

K/π fluctuations, the STAR and NA49 [51] results for p/π fluctuations show good agree-

ment. They are both negative and increase with increasing collision energy. The UrQMD

model describes the data well at SPS energies, which supports the resonance correlations
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interpretation because UrQMD is a hadronic transport model. However, UrQMD become

positive and over predicts the data at higher energies.

p/K fluctuations, which are related to baryon-strangeness correlations, can be used as a

tool to study the deconfinement phase transition [54]. In a deconfined phase where quarks

and gluons are the basic degrees of freedom, strange quarks (S = -1, B = 1/3) are the

only carrier of strangeness, which results in a strong correlation between baryon number

and strangeness. In a hadron gas, however, strangeness is mainly carried by the kaons

which have zero baryon number , and thus greatly reduce the correlation between baryon

number and strangeness. Figure 5.6 shows the incident energy dependence of σdyn results, as

before the STAR results (data and UrQMD) are calculated via νdyn and converted to σdyn

using the relation σdyn = sgn(νdyn)
√
|νdyn|. The NA49 results show a non-trivial increase

of fluctuation with decreasing collision energy: from more correlation (negative σdyn) to

enhanced fluctuation (positive σdyn). This suggests a possible change in the baryon number-

strangeness correlation at
√
sNN ≈ 8 GeV [55]. However, the STAR data in Figure 5.6 show

a smooth decrease with decreasing collision energy and disagree with NA49 data at 7.7 GeV.

Further study is still needed to understand the differences between the two experiments.

However, it should be noted that NA49’s kaon identification ability might be suspect because

a similar trend is observed in K/π fluctuations, which also requires kaon identification.

A UrQMD calculation with the STAR acceptance filter is also shown in the same figure.

UrQMD always over predicts fluctuations and becomes positive at high collision energies.
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Figure 5.6: Energy dependence of σdyn,pK results. STAR results (red stars) are from Au+Au
collisions, 0-5% centrality and only statistical errors are shown, while NA49 results (blue
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error are shown.
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5.2 Separate Sign Fluctuations

The motivation underlying the study of fluctuations is to identify critical fluctuations. How-

ever, hadronic processes like resonance decay can also influence the particle-ratio fluctuations.

To better understand the origin of the observed signal for fluctuations, separate sign fluc-

tuations are also measured for STAR data. Because the K− and p̄ yields go to zero at low

energies, we will present only K+ and p related fluctuations.

Figure 5.7 shows νdyn,K+π+ and νdyn,K+π− results plotted in terms of the number of

participating nucleons from Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. The

results for νdyn,K+π+ are negative and decrease with decreasing number of participating

nucleons. νdyn,K+π− shows a stronger negative value, which could be due to decay process

like K∗(892)→ K+ + π+. A UrQMD model calculation with STAR acceptance cuts is also

shown in the same figure. The UrQMD results agree with data in central collisions, but over

predict the signal for peripheral collisions, especially at high collision energies.

Similarly, Figure 5.8 shows the centrality dependence νdyn,pπ+ and νdyn,pπ− results.

νdyn,pπ+ is negative and decreases with decreasing number of participating nucleons. νdyn,pπ−

shows a stronger negative value, which could due to Λ decay. A UrQMD model calculation

with the STAR acceptance cuts is also shown in the same figure. The UrQMD results agree

with data at low energies and central collisions, but over predict the signal at peripheral

collisions and higher collision energies. A similar result is also observed for νdyn,pK+ and

νdyn,pK− fluctuations in Figure 5.9.

Because resonance decays are more significant at lower collision energies, it is expected

that the correlations should be stronger at low
√
sNN. Figure 5.10 shows the incident energy

dependence of the σdyn,K+π+ and σdyn,K+π− results from central Au+Au collisions (0-
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Figure 5.7: Centrality dependence of separate sign νdyn,K+π+ and νdyn,K+π− results from

Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. The data (solid symbols) are

compared to UrQMD model calculations (hollow symbols).
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Figure 5.10: Energy dependence of separate sign σdyn,Kπ results. STAR results (solid sym-
bols) are from Au+Au collisions, 0-5% centrality. Also shown are UrQMD results (hollow
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5%). Note that the results are calculated via νdyn and converted to σdyn using the relation

σdyn = sgn(νdyn)
√
|νdyn|. Both σdyn,K+π+ and σdyn,K+π− are negative and show a smooth

decrease with decreasing incident energy, while the UrQMD results with a STAR acceptance

filter slightly over predict the data. Since UrQMD is a hadronic transport model, the good

agreement between data and model indicate the hadronic contribution dominates the mea-

sured fluctuation signal. As discussed before, decay processes like K∗(892) → K+ + π−

introduce a strong correlation to the K+/π− fluctuation, while other resonance decays like

K1(1270)+ → K+ +ρ0 → K+ +π+ +π− could give negative K+/π+ fluctuations. A study

[56] using UrQMD also confirmed that removal of K∗ and φ decays significantly change the

summed sign and separate sign K/π fluctuation results.

Figure 5.11 shows the energy dependence of separate sign p/π fluctuations with 0-5%
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Figure 5.11: Energy dependence of separate sign σdyn,pπ results. STAR results (solid sym-
bols) are from Au+Au collisions, 0-5% centrality, also shown are UrQMD results(hollow
symbols).

centrality. Since the anti-proton yield vanishes at low collision energy, only proton results are

shown here. Both σdyn,pπ+ and σdyn,pπ− results are negative and decrease with decreasing

collision energy. The σdyn,pπ− are more correlated due to ∆ decays: ∆ → p + π−, The

UrQMD model agrees well with data at low energies but over predicts at high RHIC energies.

Since there is no known resonance decay that feeds into protons and K+, it has been

suggested that p/K+ fluctuation could be a good tool to investigate the proton-kaon cor-

relations. Figure 5.12 shows the incident energy dependence of separate sign σdyn re-

sults. Only proton results are shown due to vanishing p̄ yield at low energies. STAR

results (data and UrQMD) are calculated via νdyn and converted to σdyn using the rela-

tion σdyn = sgn(νdyn)
√
|νdyn|. Similar to the summed sign p/K fluctuations, the NA49

results show a non-trivial increase of fluctuations with decreasing collision energy from more
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Figure 5.12: Energy dependence of separate sign σdyn,pK results. STAR results (solid cir-
cles) are from Au+Au collisions, 0-5% centrality. Only statistical error are shown. NA49
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correlation (negative σdyn) to enhanced fluctuations (positive σdyn). This is again suggested

as a possible change in the baryon number-strangeness correlation [55]. However, STAR

results for σdyn,p/K+ in the same figure show a smooth decrease with decreasing collision

energy, which disagrees with NA49 data but generally agrees with the trend of UrQMD. The

reason for the negative values of σdyn,pK+ is still under discussion.

5.3 Scaling Properties of Fluctuation Observable

In previous sections, we discussed the centrality and energy dependence of the particle-

ratio fluctuations. It has been suggested that these fluctuation results could depend on

the experimental multiplicity, which is the number of actual identified particles used in
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νdyn calculation [57]. Since the fluctuation observable is proposed as a tool to study QCD

critical point, it is crucial to understand those trivial effects like multiplicity dependence

first. The following scalings [57] have been suggested to study the energy dependence of

K/π fluctuations:

200 GeV Poisson scaling,

σdyn(
√
s) = σdyn(200 GeV)×

√
1

<K> + 1
<π>

∣∣∣√s√
1

<K> + 1
<π> |200 GeV

(5.1)

Particle number scaling,

σdyn(
√
s) = σdyn(200 GeV)×

√
< K > + < π > |200 GeV
√
< K > + < π >

∣∣∣√s (5.2)

NK scaling,

σdyn(
√
s) = σdyn(200 GeV)×

√
< K > |200 GeV√
< K >

∣∣∣√s (5.3)

Nπ scaling,

σdyn(
√
s) = σdyn(200 GeV)×

√
< π > |200 GeV
√
< π >

∣∣∣√s (5.4)
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Geometric scaling,

σdyn(
√
s) = σdyn(200 GeV)× (< K >< π >)1/4 |200 GeV

(< K >< π >)1/4
∣∣∣√s (5.5)

Figure 5.13 shows the previously discussed energy dependence of the summed sign σdyn,Kπ,

as well as all five scaling methods mentioned above. All methods of scaling start from the

200 GeV σdyn,Kπ value and use the number of identified kaons and pions in the STAR

acceptance as listed in table 5.1. We can see that all five scaling methods give a similar

result and increase slightly with decreasing beam energy, while STAR data show little energy

dependence. The methods of scaling agree well with data at high RHIC energies but over

predict the results at 7.7 GeV and 11.5 GeV. Due to the large statistical error, it is difficult

to drawn any conclusion based on the current data. Future study is still necessary to improve

the data quality and test if the scaling holds at the lowest STAR energies.

Similarly, we also test the different scaling methods for p/π fluctuations. Figure 5.14

shows energy dependence of the σdyn,pπ with all five scaling methods mentioned above.

Since Np � Nπ, the Poisson scaling should be close to the Np scaling, and the particle

number scaling should be close to the Nπ scaling. This is indeed the case in Figure 5.14, we

see both the Poisson scaling and Np scaling show less negative toward lower energies, which

is due to increasing proton yield at lower energies, while the particle number scaling and Nπ

scaling show more negative toward lower energies due to smaller pion yield. The geometric

scaling shows little beam energy dependence. However, none of the above methods for scaling

reproduce the STAR and NA49 data. This disagreement between data and scaling methods

implies other sources of correlations such as enhanced resonance production at lower collision
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Figure 5.13: Energy dependence of σdyn,pπ results. STAR results (red stars) are from Au+Au
collisions, 0-5% centrality, only statistical error are shown, while NA49 results (blue squares)
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energies.

Figure 5.15 shows scaling results for p/K fluctuations. Again, none of the scalings could

reproduce STAR data, which could due to correlations other than simple multiplicity depen-

dence.

5.4 Compare to σdyn

As discussed in Section 2.1, we have σdyn = sgn(νdyn)
√
|νdyn| for particle-ratio fluctu-

ations if there are a sufficient number of events. To demonstrate this relation, we cal-

culated sgn(νdyn)
√
|νdyn| and compared it to σdyn results calculated using the equation
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Figure 5.16: Centrality dependence of sgn(νdyn)
√
|νdyn,Kπ| and σdyn,Kπ results from

Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV.

σdyn = sgn(σ2
data − σ

2
mixed)

√
|σ2

data − σ
2
mixed| . Figure 5.16 shows the comparison between

νdyn and σdyn for K/π fluctuations. The results are plotted versus Npart at
√
sNN = 7.7,

11.5, 39 and 200 GeV. As expected, σdyn and sgn(νdyn)
√
|νdyn| results agree within errors

for most cases. The only deviation occurs at the most peripheral collisions when the particle

numbers are small and statistical uncertainties are large.

Figure 5.17 shows a similar comparison for p/π fluctuations for the centrality dependence

of νdyn,pπ and σdyn,pπ results from Au+Au collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV.

Again, σdyn and sgn(νdyn)
√
|νdyn| results agree well for most cases.
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Figure 5.18 shows the centrality dependence of νdyn,pK and σdyn,pK results from Au+Au

collisions at
√
sNN = 7.7, 11.5, 39 and 200 GeV. Unlike K/π and p/π fluctuations, which

have a relatively large denominator (identified pions), both proton and kaon numbers are

relatively small (Table 5.1), especially for peripheral collisions. This requires more events

to get stable results for σdyn. In the figure, we can see that σdyn and sgn(νdyn)
√
|νdyn|

results still agree very well in central collisions. However, they start to deviate from each

other at mid-centrality. The results for sgn(νdyn)
√
|νdyn| decrease smoothly from central to

peripheral collisions for all four energies shown here, except for the most peripheral points

when the multiplicity is low and the background is relatively high. The σdyn results show

little deviation from sgn(νdyn)
√
|νdyn| at 7.7 and 11.5 GeV but the difference becomes clear

at higher energies. Since σdyn requires a mixed events calculation, it is more sensitive to

detector issues and the event mixing method. Therefore sgn(νdyn)
√
|νdyn| gives a better

result in these low multiplicity situations.
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Chapter 6

Balance Function Results

6.1 Balance Functions from Au+Au, d+Au, and p + p

Collisions at
√
sNN = 200 GeV

6.1.1 Balance Functions in Terms of ∆η and ∆y

Figure 6.1 shows the balance function in terms of ∆η for all charged particles from Au+Au

collisions at
√
sNN = 200 GeV for nine centrality bins from most central (0-5%) to most

peripheral (70-80%). The balance function gets narrower as the collisions become more

central. The balance function for mixed events is zero for all centralities and ∆η. The balance

function for shuffled events is significantly wider than the measured balance functions. Model

predictions show that inter-pair correlations (e.g. Hanbury-Brown Twiss (HBT) and final

state interactions) should be significant for ∆η < 0.1[60].

Figures 6.2 and 6.3 show the balance functions for identified charged pion pairs and

kaons pairs, respectively, for Au+Au collisions at
√
sNN = 200 GeV for nine centrality bins
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Figure 6.1: The balance function in terms of ∆η for all charged particle pairs from Au+Au
collisions at

√
sNN = 200 GeV for nine centrality bins.

as a function of the relative rapidity, ∆y. The balance function for identified pion pairs gets

narrower in central collisions. The lower magnitude of the balance function for pion pairs and

kaon pairs compared with the balance function for all charged particles is due to the fact that

the efficiency of observing an identified pion or kaon is lower than for unidentified charged

particles. The balance function calculated from mixed events is zero for all centralities

and ∆y for both pions and kaons. The balance functions calculated using shuffled events

are substantially wider than the measured balance functions. The discontinuity in B(∆y)

for kaons around ∆y = 0.4 visible at all centralities is due to φ decay, which was verified

using HIJING calculations. Model predictions show that inter-pair correlations should be

significant for ∆y < 0.2 [60]. These effects scale with the multiplicity and thus are more

apparent in central collisions.
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Figure 6.2: The balance function in terms of ∆y for identified charged pion pairs from
Au+Au collisions at

√
sNN = 200 GeV for nine centrality bins.
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Figure 6.3: The balance function in terms of ∆y for identified charged kaon pairs from
Au+Au collisions at

√
sNN = 200 GeV for nine centrality bins.
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To investigate the system-size dependence of the balance function and to provide a

nucleon-nucleon reference for the balance functions extracted from Au+Au collisions, we

measured the balance functions for p + p and d+Au collisions at
√
sNN = 200 GeV. Fig-

ure 6.4 shows the balance functions for all charged particles for p + p collisions at
√
s =

200 GeV. The balance functions for p + p collisions are integrated over all observed event

multiplicities to allow comparison with centrality-selected d+Au and Au+Au results. Note

that the width of the balance function in terms of ∆η for p + p collisions is independent

of the multiplicity of tracks in the event. The top panel of Figure 6.4 shows the balance

function for all charged particles in terms of ∆η. In the bottom panel of Figure 6.4, the

balance functions are shown for identified charged pion pairs and identified charged kaon

pairs in terms of ∆y from p+ p collisions at
√
s = 200 GeV. The balance function for mixed

events is zero for all ∆η and all ∆y. The observed shapes of the balance functions for the

identified charged pions and kaons are similar to those observed in peripheral (70 - 80%)

Au+Au collisions. The fact that the balance function for kaon pairs has a lower magnitude

than the balance function for pion pairs reflects the lower efficiency for identifying charged

kaons versus identifying charged pions in STAR.

Figure 6.5 shows the balance functions in terms of ∆η for all charged particles from d+Au

collisions at
√
sNN = 200 GeV for three centrality bins, 0-20%, 20-60%, and 60-100%.

6.1.2 Balance Functions in Terms of qinv

The balance function in terms of ∆η and ∆y is observed to narrow in central collisions and

model calculations have been used to interpret this narrowing in terms of delayed hadroniza-

tion [58, 59, 60, 61]. However, in a thermal model, the width of the balance function in terms
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of ∆η and ∆y can be influenced by radial flow. In the absence of detector efficiency and ac-

ceptance considerations, the width of the balance function in terms of the Lorentz invariant

momentum difference between the two particles, qinv, is determined solely by the breakup

temperature if the balancing charges are emitted from the same point in coordinate space.

However, when detector acceptance is taken into account, some dependence on collective

flow is introduced [60]. Thus, analyzing the balance function in terms of qinv avoids some of

the complications associated with collective flow, and the balance function calculated with a

breakup temperature should be the narrowest possible balance function if the particles are

assumed to be emitted from the same position in coordinate space. In addition, contribu-

tions to the balance function from the decay of particles are more identifiable. For example,

the decay of K0
S produces a sharp peak in B(qinv) for charged pions, while the contribution

to B(∆y) for charged pions from the decay of K0
S is spread out over several bins in ∆y.

To study balance functions in terms of qinv, we use identified charged pions and identified

charged kaons. For pion pairs, we observe a peak from the decay K0
S → π+ + π−. For kaon

pairs, we observe a peak from the decay φ→ K+ +K−. These peaks are superimposed on

the balance function of correlated charge/anti-charge pairs not resulting from the decay of

a particle.

Figure 6.6 shows the balance function for identified charged pions in terms of qinv for

Au+Au collisions at
√
sNN = 200 GeV for nine centrality bins. These balance functions

have been corrected by subtracting the balance functions calculated using mixed events.

These mixed events are not zero for all qinv because of differences in the tracking at TPC

sector boundaries for opposite charges. The balance functions calculated for mixed events

integrate to zero as one would expect and the subtraction of the mixed events from the
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Figure 6.6: The balance function in terms of qinv for charged pion pairs from Au+Au colli-
sions at

√
sNN = 200 GeV in nine centrality bins. Curves correspond to a thermal distribution

(Equation 6.1) plus K0
S decay.
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Figure 6.7: The balance function in terms of qinv for charged pion pairs in two centrality
bins over the range 0 < qinv < 0.2 GeV/c.
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measured balance functions does not affect the integral of the resulting balance functions.

At each centrality, a peak is observed corresponding to charged pion pairs resulting from

K0
S → π+ + π−. The solid curves represent a fit consisting of the sum of two terms. The

first term consists of a non-relativistic thermal distribution of the form

B(qinv) = aq2
inve
−q2inv/(2σ

2) (6.1)

where a is a constant, the pre-factor q2
inv accounts for the phase-space effect, and σ is a width

parameter. The second term of the fit is a Gaussian distribution in qinv describing the K0
S

decay. Note that no peak from the decay of the ρ0 is visible in central collisions around qinv

= 0.718 GeV/c where one would expect to observe the ρ0. This non-observation of the ρ0

is in contrast to HIJING, which predicts a large ρ0 peak. The ρ0 peak is visible in the most

peripheral collisions, which is consistent with our previous study of ρ0 production at higher

pt [62]. The authors of Ref. [61] attribute the apparent disappearance of the ρ0 in central

collisions to the cooling of the system as it expands, which lowers the production rate of ρ0

compared with pions. The measured balance functions for pions are distinctly different from

the balance functions calculated using shuffled events. In particular, the sharp peak from

the K0
S decay is not present in the balance functions calculated using shuffled events.

HBT/Coulomb effects are visible for qinv < 0.2 GeV/c in Figure 6.6. Figure 6.7 shows

the balance function over the range of 0 < qinv < 0.2 GeV/c for the most central bin (0

- 5%) and the most peripheral bin (70 -80%). The Coulomb force pulls opposite charges

closer together and pushes same charges apart, leading to an enhancement of opposite-sign

and a suppression of same-sign pairs at small qinv. This effect leads to a rise in the balance

function at small qinv, which is larger in central collisions, where the long-range Coulomb
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Figure 6.8: The balance function in terms of qinv for charged kaon pairs from Au+Au
collisions at

√
sNN = 200 GeV in nine centrality bins. Curves correspond to a thermal

(Equation 6.1) distribution plus φ decay.

force affects more particles [61]. In peripheral collisions, because the Coulomb interaction

is less important and the HBT correction is larger because of the smaller source size, the

Coulomb enhancement disappears and the balance function becomes negative at small qinv

[61].

Figure 6.8 shows the balance function for identified charged kaons in terms of qinv for

Au+Au collisions at
√
sNN = 200 GeV in nine centrality bins. These balance functions

were corrected by subtracting mixed events as was done for the charged pion results. At

each centrality, a peak is observed corresponding to charged kaon pairs resulting from φ→

K+ +K−. The solid curves represent fits consisting of a non-relativistic thermal distribution

(Equation 6.1) plus a Gaussian distribution in qinv for the φ decay. HBT/Coulomb effects

at low qinv for kaon pairs are not as strong as those observed for pion pairs. The measured
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balance functions are distinct from the balance functions calculated from shuffled events.

Several differences between B(qinv) for charged pions and charged kaons are evident. The

observed HBT/Coulomb effects at low qinv are much stronger for pions than for kaons. The

HBT/Coulomb effects for pions change dramatically with centrality while the HBT effects

for kaons are small and change little with centrality. The overall normalization for kaons is

lower than the overall normalization for pions, reflecting the lower efficiency for detecting

identified kaons. The contribution to B(qinv) for pions from K0
S decay is approximately 7%,

independent of centrality. The contribution to B(qinv) for kaons from φ decay is approxi-

mately 50%, independent of centrality.

Figure 6.9 shows the balance functions in terms of qinv for p + p collisions at
√
s = 200

GeV. Figure 6.9a shows the balance function for charged pion pairs and Figure 6.9b shows

the balance function for charged kaon pairs. The solid curves are thermal fits (Equation 6.1)

plus a peak for K0
S and ρ0 decay in the case of charged pions, and for φ decay in the case of

charged kaons. The thermal fit does not reproduce the charged pion results, while it works

well for the charged kaon data. The mass of the ρ0 used in the fit shown for pion pairs was

assumed to be 0.77 GeV/c2. A better fit can be obtained if the mass of the ρ0 is lowered by

0.04 GeV/c2, as was observed previously in studies of ρ0 production in p+p collisions at
√
s

= 200 GeV [62]. This fit is shown as a dashed curve in the upper panel of Figure 6.9. Note

that the ρ0 peak visible in B(qinv) for pions from p+ p collisions is not observed in B(qinv)

for pions from central Au+Au collisions, but is observed for pions from peripheral Au+Au

collisions, as shown in Figure 6.6.
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Figure 6.10: The balance function in terms of qlong for charged pion pairs from Au+Au
collisions at

√
sNN = 200 GeV in nine centrality bins.

6.1.3 Balance Function in Terms of Components of qinv

Here we present results for the three components of qinv. These components are qlong, the

component along the beam direction; qout, the component in the direction of the transverse

momentum of the observed pair; and qside, the component perpendicular to qlong and qout.

Analysis of the balance function for these three components can address the question of

what causes the balance function to narrow in central Au+Au collisions. In a thermal model

where the balancing particles are emitted from the same position in coordinate space, the

widths would be identical for the three components. On the other hand, charge separation

associated with string dynamics should result in balance functions that are wider in qlong

than in qside or qout [60, 61]. Also because the velocity gradient is much higher in the

longitudinal direction, diffusion should broaden the balance function more in qlong [61].
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Figure 6.11: The balance function in terms of qout for charged pion pairs from Au+Au
collisions at

√
sNN = 200 GeV in nine centrality bins.

Figs. 6.10, 6.11, and 6.12 show the balance functions for charged pion pairs from Au+Au

collisions at
√
sNN = 200 GeV in terms of qlong, qout, and qside respectively. The balance

functions calculated using mixed events are subtracted from the measured balance functions.

The balance functions for all three components are narrower in central collisions than in

peripheral collisions.

The balance functions in terms of qside do not look like those measured using qlong or

qout because the lower momentum cut-off of STAR strongly affects B(qside) for qside < 0.38

GeV/c, which underscores the importance of performing comparisons with models that have

been put through detailed efficiency and acceptance filters.
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Figure 6.12: The balance function in terms of qside for charged pion pairs from Au+Au
collisions at

√
sNN = 200 GeV for nine centrality bins.

6.1.4 Balance Functions in Terms of ∆φ

The balance function in terms of ∆φ may yield information related to transverse flow at

freeze-out [63] and may be sensitive to jet production. One might expect that jet-like phe-

nomena would involve the emission of correlated charge/anti-charge pairs at small relative

azimuthal angles. We present balance functions for all charged particles with 0.2 < pt < 2.0

GeV/c from Au+Au collisions at
√
sNN = 200 GeV as a function of the relative azimuthal

angle, ∆φ. In addition, we present B(∆φ) for all charged particles with 1.0 < pt < 10.0

GeV/c to enhance any possible jet-like contributions to the balance function.

Fig. 6.13 shows the balance functions as a function of ∆φ for all charged particles with

0.2 < pt < 2.0 GeV/c in nine centrality bins. The balance functions for mixed events were

subtracted. Note that some structure in ∆φ related to the sector boundaries of the STAR
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Figure 6.13: The balance function in terms of ∆φ for all charged particles with 0.2 < pt < 2.0
GeV/c from Au+Au collisions at

√
sNN = 200 GeV in nine centrality bins. The closed circles

represent the real data minus the mixed events.

TPC is still visible after the subtraction of the mixed events. We observe a peaking at ∆φ

= 0 in central collisions, while in peripheral collisions, the balance functions are almost flat.

Fig. 6.13 also shows the balance functions calculated using shuffled events. The balance

functions from shuffled events are constant with ∆φ and show no centrality dependence.

To augment this result, Fig. 6.14 presents balance functions in which we use only particles

with 1.0 < pt < 10.0 GeV/c. For this case, we see that the measured balance functions

vary little with centrality. Again the balance functions calculated with shuffled events are

constant with ∆φ and show no centrality dependence. HIJING calculations for B(∆φ) for all

charged particles with 0.2 < pt < 2.0 GeV/c exhibit little dependence on ∆φ, while HIJING

calculations for particles with 1.0 < pt < 10.0 GeV/c are peaked at ∆φ = 0, suggesting that
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Figure 6.14: The balance function in terms of ∆φ for all charged particles with 1.0 < pt <
10.0 GeV/c from Au+Au collisions at

√
sNN = 200 GeV in nine centrality bins. The closed

circles represent the real data minus the mixed events.

the balance functions for this higher pt range show jet-like characteristics.

The dramatically tight correlations in ∆φ in central collisions of Au+Au shown in

Fig. 6.13 are qualitatively consistent with the radial flow of a perfect liquid. In a liquid

with very short mean free path, the balancing particles would remain in close proximity

throughout the reaction. A large mean free path, which would necessitate a large viscosity,

would damp the correlations in ∆φ [64]. This trend is also consistent with a picture where

charges are not created until after the flow has been established.
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6.1.5 Comparison with Models

Fig. 6.15 compares the measured balance function B(∆y) for charged pion pairs from central

collisions of Au+Au at
√
sNN = 200 GeV to the predictions of the blast-wave model [61] and

to filtered HIJING calculations taking into account acceptance and efficiency. The blast-wave

model includes radial flow, emission of charge/anti-charge pairs of particles close together

in space and time, resonances, HBT and Coulomb effects, strong force effects, inter-domain

interactions, and a STAR experimental filter. The blast-wave calculations shown in Fig. 6.15

include the acceptance cuts in the current paper. The resulting absolute predictions of the

blast-wave model agree well with the measured balance function. In contrast, the balance

function predicted by HIJING is significantly wider than the measured balance function.

The widths of the balance functions predicted by the blast-wave and HIJING are compared

with the experimental values in Fig. 6.18.

The width of the balance function predicted by the blast-wave model is close to the width

observed in central collisions. The blast-wave model assumes that the charge/anti-charge

pairs of particles are created close together in space and at the same time, and contains no

scattering or longitudinal expansion that would widen the balance function in terms of ∆y.

Thus, the agreement of the predicted width from the blast-wave model and the data are

consistent with the idea of delayed hadronization in that delayed hadronization in central

collisions would minimize the contribution of diffusion effects to the width of the balance

function.

The balance function in terms of qinv provides the most direct way to study the depen-

dence of the balance function on temperature. Fig. 6.16 compares the balance function in

terms of qinv for charged pion pairs from central collisions of Au+Au at
√
sNN = 200 GeV
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Figure 6.15: The balance function in terms of ∆y for charged pions from central collisions
of Au+Au at

√
sNN = 200 GeV compared with predictions from the blast-wave model from

Ref. [61] and filtered HIJING calculations taking into account acceptance and efficiency.
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to the predictions of the blast-wave model and to filtered HIJING calculations. For the

blast-wave model calculations, HBT is not included and the decays of the K0 and ρ0 are

not shown. The solid curve for the data represents a fit comprised of a thermal distribution

(Equation 6.1) plus K0 decay. The dashed curve for the blast-wave model calculations repre-

sents a thermal fit (Equation 6.1). The dotted curve for the HIJING calculations represents

a thermal distribution (Equation 6.1) plus ρ0 decay. All the fits are carried out over a range

in qinv that is not affected by HBT/Coulomb effects. The width extracted from the thermal

fit to the blast-wave model calculations is compared with the width extracted from exper-

imental data in Fig. 6.19. The blast-wave model reproduces the observed width in central

collisions. The HIJING calculations show a strong ρ0 peak that is not present in the data.

Future analyses should be able to disentangle the effects of cooling and diffusion in driving

the narrowing of the balance function. Diffusive effects should largely manifest themselves

in the qlong variable because the initial velocity is in the longitudinal direction and some

creation mechanisms, such as strings, preferentially separate the pairs in the longitudinal

direction.

6.1.6 Balance Function Widths

The balance functions presented in the previous section provide insight into the correlation of

charge/anti-charge pairs in collisions at RHIC. This approach complements the approach of

studying these phenomena using charge-dependent correlation functions in two dimensions,

(∆η,∆φ) [66, 67]. The balance function can be related to these correlation functions and

to other two-particle observables. B(∆y) can be interpreted as the distribution of relative

rapidities of correlated charge/anti-charge pairs. The width of B(∆y) then can be used to
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√
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Figure 6.17: The balance function width 〈∆η〉 for all charged particles from Au+Au collisions
at
√
sNN = 200 GeV compared with the widths of balance functions calculated using shuffled

events. Also shown are the balance function widths for p+p and d+Au collisions at
√
sNN =

200 GeV. Filtered HIJING calculations are also shown for the widths of the balance function
from p+ p and Au+Au collisions. Filtered UrQMD calculations are shown for the widths of
the balance function from Au+Au collisions.

determine whether correlated charge/anti-charge pairs of particles are emitted close together

or far apart in rapidity. The width of the balance function B(qinv) can be used to study

thermal distributions because this balance function can be related to the temperature, and

is largely unaffected by any radial expansion.

To quantify the evolution of the balance functions B(∆y) and B(∆η) with centrality, we

extract the width, 〈∆y〉 and 〈∆η〉, using a weighted average.
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〈∆η〉 =

iupper∑
i=ilower

B (∆ηi) ∆ηi

iupper∑
i=ilower

B (∆ηi)

(6.2)

For B(∆η), the weighted average is calculated for 0.1 ≤ ∆η ≤ 2.0 and for B(∆y), the

weighted average is calculated for 0.2 ≤ ∆y ≤ 2.0.

Fig. 6.17 shows the balance function widths for all charged particles from Au+Au, d+Au,

and p + p collisions at
√
sNN = 200 GeV plotted in terms of the number of participating

nucleons, Npart. In addition, we present the widths of the balance functions from Au+Au

collisions for shuffled events. The widths of the shuffled events are considerably larger than

those from the measured data and represent the largest width we can measure using the

STAR acceptance for the system under consideration.

The balance function widths scale smoothly from p+ p through the three centrality bins

for d+Au and down to the nine Au+Au collision centrality data points. This figure also shows

filtered HIJING calculations for p + p and Au+Au calculations for HIJING and UrQMD.

The HIJING calculations for p+p reproduce the measured width. The Au+Au HIJING and

UrQMD calculations, however, show little centrality dependence and are comparable to those

calculated from the HIJING p+p simulations. This is despite the fact that HIJING does not

predict any appreciable radial flow while UrQMD predicts radial flow in Au+Au collisions but

less than that observed experimentally. This radial flow should produce a narrower balance

function in central collisions where radial flow is the largest, while hadronic scattering should

lead to a wider balance function. The fact that the measured widths from Au+Au collisions

narrow in central collisions is consistent with trends predicted by models incorporating late
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Figure 6.18: The balance function widths for identified charged pions and charged kaons
from Au+Au collisions at

√
sNN = 200 GeV and p+ p collisions at

√
s = 200 GeV. Filtered

HIJING calculations are shown for the same systems. Filtered UrQMD calculations are
shown for Au+Au. Also shown is the width of the balance function for pions predicted by
the blast-wave model of Ref. [61].

hadronization [58, 61].

Fig. 6.18 presents the widths of the balance function, B(∆y), for identified charged pions

and identified charged kaons from p+p collisions at
√
s = 200 GeV and Au+Au collisions at

√
sNN = 200 GeV. Also shown are filtered HIJING and UrQMD calculations. For charged

pions, the measured balance function widths for Au+Au collisions get smaller in central

collisions, while the filtered HIJING and UrQMD calculations for Au+Au again show no

centrality dependence. The HIJING calculations for p+ p collisions reproduce the observed

widths.

In contrast, the widths of the measured balance function for charged kaons from Au+Au
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Figure 6.19: The balance function width σ extracted from B(qinv) for identified charged
pions and kaons from Au+Au collisions at

√
sNN = 200 GeV and p + p collisions at

√
s =

200 GeV using a thermal fit (Equation 6.1) where σ is the width. Filtered HIJING and
UrQMD calculations are shown for pions and kaons from Au+Au collisions at

√
sNN = 200

GeV. Values are shown for
√

2mTkin from Au+Au collisions, where m is the mass of a pion
or a kaon, and Tkin is calculated from identified particle spectra [65]. The width predicted
by the blast-wave model of Ref. [61] is also shown for pions.
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collisions show little centrality dependence. The extracted widths for charged kaons are

consistent with the predictions from filtered HIJING calculations and are consistent with

the p + p results. The widths for charged kaons predicted by UrQMD are somewhat larger

than the data. The agreement with HIJING and the lack of centrality dependence may

indicate that kaons are produced mainly at the beginning of the collision rather than during

a later hadronization stage [58]. The larger widths predicted by UrQMD for kaons may

reflect the hadronic scattering incorporated in UrQMD, although the statistical errors are

large for both the data and the model predictions.

Fig. 6.19 shows the widths extracted from B(qinv) for identified charged pions and kaons

from Au+Au collisions at
√
sNN = 200 GeV and p + p collisions at

√
s = 200 GeV using

a thermal distribution (Equation 6.1) where σ is the width. The widths for the pions are

somewhat smaller than the widths for the kaons, although the kaon widths have a large

statistical error. This width is related to the temperature of the system when the pions and

kaons are formed. Filtered HIJING calculations show no centrality dependence and predict

a difference between the widths for pions and kaons. The widths predicted by UrQMD for

pions are smaller than those predicted by HIJING but are still larger than the measured

widths. In addition, the widths predicted by UrQMD for pions seem to show a centrality

dependence, although it is not as strong as that for the data. The widths predicted by

UrQMD for kaons show no centrality dependence and agree with HIJING.

For a thermal system in the non-relativistic limit (m� T ), the balance function has the

functional form given in Equation 6.1 where σ =
√

2mT . For kinetic freeze-out temperatures

T ∼ 0.1 GeV [65], kaons are non-relativistic, and this functional form was seen to describe

the balance function in Fig. 6.8. Indeed, as seen in the right panel of Fig. 6.19, the evolution
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in the width of the balance function may be understood in terms of the evolution of the

freeze-out temperature as a function of centrality [65].

In the ultra-relativistic case (m � T ), the balance function from a thermal system

is exponential rather than Gaussian, B(qinv) ∼ q2
inve
−qinv/T . The proper functional form

for pions, being neither non-relativistic nor ultra-relativistic, is more complicated. Indeed,

we found that neither the Gaussian form nor the exponential form fully describe the pion

balance function in Fig. 6.6. Thus, to get a feeling for whether the evolution in freeze-

out temperature can explain the narrowing of the balance function for pions, we turn to

numerical calculations. Calculations in Ref. [60] show a 27% reduction in the Gaussian width

of B(qinv) as the temperature is varied from 120 to 90 MeV, the temperatures inferred from

fits to peripheral and central collisions, respectively [65]. As seen in Fig. 6.19, the measured

width for peripheral (central) collisions is 0.33 GeV/c (0.27 GeV/c), a 18% reduction. Thus,

the centrality evolution in freeze-out temperature may help explain much of the narrowing of

the balance function in terms of qinv for pions as well as for kaons. However, firm conclusions

require more complete calculations including all detector effects.

Fig. 6.20 shows the widths of the balance functions in terms of qlong, qout, and qside for

charged pion pairs in Au+Au collisions at
√
sNN = 200 GeV compared with the results of

filtered UrQMD calculations. These widths were extracted by taking the weighted average

over the qlong, qout, and qside range from 0.0 to 1.3 GeV/c. The width 〈qside〉 is larger

than 〈qlong〉 and 〈qout〉 because the lower pt threshold of STAR affects it more strongly. In

the most peripheral collisions, the widths 〈qlong〉 and 〈qout〉 are comparable to each other.

As the collisions become more central, both 〈qlong〉 and 〈qout〉 decrease. The change in

〈qlong〉 is less than the change of 〈qout〉 with increasing centrality. Thus it seems that the
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Figure 6.20: The widths for the balance functions for pions in terms of qlong, qout, and qside
compared with UrQMD calculations.

two transverse widths, 〈qout〉, and 〈qside〉, decrease in central collisions more strongly than

the longitudinal width, 〈qlong〉. This may imply that string dynamics and diffusion due to

longitudinal expansion may keep 〈qlong〉 from decreasing as much in more central collisions

[61]. The decrease in the transverse widths is consistent with the decrease in Tkin as the

collisions become more central. In the most peripheral collisions, the widths predicted by

UrQMD are consistent with the data. As the collisions become more central, the predicted

widths decrease slightly, but not as much as observed in the data. This is consistent with

results using the balance function in terms of qinv. Additional theoretical input is required to

draw more conclusions from the analysis of the balance function in terms of the components

of qinv.

Fig. 6.21 shows the weighted average cosine of the relative azimuthal angle, 〈cos (∆φ)〉,

extracted from the balance functions B(∆φ) for all charged particles from Au+Au collisions

at
√
sNN = 200 GeV with 0.2 < pt < 2.0 GeV/c and 1.0 < pt < 10.0 GeV/c. The values for
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Figure 6.21: The weighted average cosine of the relative azimuthal angle, 〈cos (∆φ)〉, ex-
tracted from B(∆φ) for all charged particles with 0.2 < pt < 2.0 from Au+Au collisions at√
sNN = 200 GeV and from all charged particles with 1.0 < pt < 10.0 GeV/c, compared

with predictions using filtered UrQMD calculations.

〈cos (∆φ)〉 are extracted over the range 0 ≤ ∆φ ≤ π. For the lower pt particles, the balance

function narrows dramatically in central collisions (large positive values of 〈cos (∆φ)〉). The

narrow balance functions observed in central collisions may be a signature of the flow of a

perfect liquid, as discussed above. For the higher pt particles, 〈cos (∆φ)〉 in Au+Au collisions

shows less centrality dependence.

Fig. 6.21 also shows UrQMD calculations for 〈cos (∆φ)〉. The predictions for the 0.2 <

pt < 2.0 GeV/c data set are much lower than the measured values, which is consistent with

the observation that UrQMD underpredicts radial flow. The predictions for 〈cos (∆φ)〉 for

the 1.0 < pt < 10.0 GeV/c data set show no centrality dependence and are also much lower

than the measured values.
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√
sNN from 7.7 to 200 GeV.
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6.2 Beam Energy Dependent Balance Functions

Figure 6.22 shows the balance function in terms of ∆η for all charged particles. The most

central events (0-5%) are shown for seven incident energies. The data (red circles) in the

figure are the balance function results from real data corrected by subtracting the balance

function calculated using mixed events. We can see that, for all the energies shown here, the

balance functions from data are narrower than the ones from shuffled events (blue squares).

To quantify the balance function widths for all the energies, Figure 6.23 shows the cen-

trality dependence of the weighted average (Equation 6.2) of the balance function for seven

collision energies. The weighted average is calculated for 0.1 < ∆η < 2.0 to reduce the

contributions from inter-pair correlations (HBT and Columb)[60]. For all the energies in the

figure, shuffled events show no centrality dependence, while the data show narrower balance

functions in central collisions. This narrowing of the balance function at central collisions

may imply delayed hadronization. [74]

Figure 6.24 shows the energy dependence of the balance function width for central Au+Au

collisions. The data show a smooth decrease of 〈∆η〉 with increasing energy. UrQMD

calculations predict a similar trend but over predict the observed results. Since the balance

function is sensitive to the hadronization time and relative diffusion after hadronization,

this decrease in balance function width could be a signal of the onset of deconfinment or

radial flow. The UrQMD model is a hadronic model that does not have a deconfined phase

transition and has little flow. This early hadronization time combined with strong interaction

between final particles leads to a wider balance function. In the same figure, the shuffled

events from both data and UrQMD show a wider balance function that slightly increases

with increasing energy. Since the shuffled events represent the widest balance function within
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Figure 6.24: Energy dependence of the balance function width 〈∆η〉 for central Au+Au
collisions (0-5%) compared with shuffled events. Both data and UrQMD calculations are
shown here.

STAR’s acceptance, the change of the balance function calculated using shuffled events is

due to the slight changes in STAR’s η acceptance with energy.

Due to a calibration issue, one sector out of twenty-four sectors in the TPC has been

turned off for Run 10 200 GeV data. For the Run 10 7.7 GeV data, the wide z vertex cut

(|z| < 70 cm) introduce a non-uniform η distribution. These detector acceptance effects

cause a difference in the shuffled events between data and UrQMD simulations.

To reduce acceptance effects and make a better comparison of the balance function width

between different incident energies and different experiments, NA49 has proposed a normal-

ized parameter W [68], which is defined as:
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W =
100 · (< ∆η >shuffled − < ∆η >data)

< ∆η >shuffled
(6.3)

The W parameter represents the deviation of the data from shuffled events. Thus a

narrower measured balance function means a stronger deviation from shuffled events, which

will give a larger W value. Although the W parameter was proposed to be insensitive to

acceptance effects, we find a strong dependence of W on the acceptance. Figure 6.25 shows

the acceptance dependence of the W parameter at
√
sNN = 200 GeV. To study the effect,

we reduced STAR’s pseudorapidity acceptance from |η| < 1.0 to |η| < 0.4. The upper

panel shows the acceptance dependence 〈∆η〉 of the data and shuffled events. The shuffled

events have a relatively linear dependence of 〈∆η〉 on |η|. The fit for shuffled events has a

χ2 of 16.9 for 5 degrees of freedom, while the 〈∆η〉 from data shows clear deviation from

this linear correlation. The lower panel of Figure 6.25 shows the W parameter calculated

used the 〈∆η〉 from data and shuffled events at each acceptance. Clearly W decreases with

decreasing acceptance.

To study the energy dependence of the W parameter, Figure 6.26 shows the W parameter

with a reduced acceptance. Since NA49 has a pesudorapidity acceptance of approximately

1.4 units [68], we reduce the acceptance of STAR data and UrQMD calculations to |η| < 0.7.

The STAR data show a smooth increase with increasing energy, which is anticipated from

Figure 6.24. The NA49 results agree with STAR data, except for the NA49 highest energy.

The UrQMD calculations predict the increasing trend but under predict the magnitude.

Since a large W means a narrower balance function, the results from the normalized W

parameter are consistent with weighted average results from 6.24. To illustrate the magnitude
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of the acceptance effect, STAR data with full |η| < 1.0 acceptance are also shown in same

figure (open stars). Similar to Figure 6.25, a larger |η| acceptance leads to a larger W value.

Overall, within the same acceptance, the W parameter shows a smooth increase from lowest

SPS energy to top RHIC energy.

6.3 Reaction-Plane-Dependent Balance Functions

Recently, it has been proposed that the hot and dense matter created in heavy ion collisions

may form metastable domains where parity is locally violated. This possible local parity

violation [69] coupled with the strong magnetic field produced by passing charged nuclei

in such a collision could cause a charge separation across the reaction plane in non-central

collisions called the chiral magnetic effect (CME) [70, 71, 72]. One observable proposed to
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Figure 6.27: Centrality dependence of the three point correlator in Au+Au and Cu+Cu
collisions at

√
sNN = 200 GeV. Shaded bands represent uncertainty from the measurement

of v2. The figure is from Ref. [76]
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measure the CME is the three point correlator [73]

γα,β =
〈
cos(φα + φβ − 2ψRP )

〉
. (6.4)

Current theoretical understanding suggest that the Chiral Magnetic Effect will cause a

charge separation across the reaction plane, thus a negative γ for same-sign correlations

and positive γ for opposite-sign correlations. It is also expected that the opposite-sign

correlations might be suppressed since it need to go through the hot and dense medium.

Indeed, figure 6.27 shows centrality dependence of the three point correlator in Au+Au

and Cu+Cu collisions at
√
sNN = 200 GeV [76]. For the Au+Au collisions, same charge

correlations are clearly positive and opposite charge correlations are negative as expected.

The magnitude of opposite charge correlations are smaller compare to same-sign correlation,

which agrees with the possible suppression of back-to-back charge correlations.

On the other hand, the balance function, which measures the correlation between the

opposite-sign charge pairs, is sensitive to the mechanisms of charge formation and the subse-

quent relative diffusion of the balancing charges [24]. The reaction-plane-dependent balance

function can be written as

B(φ,∆φ) =
1

2
{∆+−(φ,∆φ)−∆++(φ,∆φ)

N+(φ)
+

∆−+(φ,∆φ)−∆−−(φ,∆φ)

N−(φ)
}. (6.5)

Here N+(−)(φ) is the total number of positive(negative) particles that have an azimuthal

angle φ with respect to the event plane and ∆+−(φ,∆φ) represents the total number of
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Figure 6.28: The balance function for φ = 0◦ (in-plane), φ = 45◦, and φ = 90◦ (out-of-plane)
particles pairs (not corrected for event plane resolution). The 40-50% centrality bin is shown.

pairs summed over all events where the first (positive) particle has an azimuthal angle φ

with respect to event plane and the second (negative) particle has a relative azimuthal angle

∆φ with respect to the first particle. Similarly we can express ∆++(φ,∆φ), ∆−+(φ,∆φ)

and ∆−−(φ,∆φ).

The data used in this analysis are from Au+Au collisions at
√
sNN = 200 , 62.4, 39,

11.5, and 7.7 GeV measured using the STAR detector. A transverse momentum cut of

0.2 < pt < 2.0 GeV/c was applied as well as a pseudorapidity cut of |η| < 1.0. The second

order event plane from TPC is used here and electrons are suppressed using the specific

energy loss inside the TPC.

Figure 6.28 shows φ = 0◦ (in-plane), φ = 45◦, and φ = 90◦ (out-of-plane) balance

function for 40-50% centrality only. The in-plane balance function is narrower than the

out-of-plane balance function, which is caused by the strong collective flow in-plane. The
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Figure 6.29: The balance function for φ = 0◦ (in-plane), φ = 45◦, and φ = 90◦ (out-of-plane)
particles pairs (not corrected for event plane resolution). Nine centrality bins are shown.

φ = 45◦ balance function is asymmetric and peaked at negative ∆φ because charge pairs

are more correlated on the in-plane side due to strong elliptic flow. Also shown are the

blast-wave model calculations from Ref. [74].

A similar trend is also observed for other centralities. Figure 6.29 shows the same analysis

for nine centralities from most central (0-5%) to most peripheral (70%-80%) collisions. All

three cases show peak structures in central collisions, which is due to strong collective flow.

The asymmetry of the φ = 45◦ balance function is most significant at mid-central collisions,

where the elliptic flow is strongest.

To quantify the effect of collective flow on the balance function, we present the weighted

average cosine, cb(φ), and weighted average sine, sb(φ), extracted from the balance functions.
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cb(φ) =
1

zb(φ)

∫
d∆φB(φ,∆φ) cos(∆φ),

sb(φ) =
1

zb(φ)

∫
d∆φB(φ,∆φ) sin(∆φ),

zb(φ) =

∫
d∆φB(φ,∆φ). (6.6)

cb(φ) represents the width of balance function. If charges are created at the same point

and do not diffuse due to strong collective flow, cb(φ) would be close to unity. sb(φ) is an

odd function of ∆φ, so it quantifies the asymmetry of the balance function. Figure 6.30

shows cb(φ) and sb(φ) for Au+Au collisions at
√
sNN = 200 GeV. cb(φ) is closer to unity in

the 0-5% centrality bin, which is due to a stronger collective flow in central collisions, while

in mid-peripheral and peripheral collisions, cb(φ) shows a difference between the in-plane

and out-of-plane balance functions, which is caused by stronger elliptic flow in the event

plane. sb(φ) reaches a maximum at φ=135◦, 315◦ and a minimum at φ=45◦, 225◦, which

demonstrates that charged pairs are more likely to be emitted in-plane.

Figure 6.30 also shows a comparison with the blast-wave model of Ref. [74]. The blast-

wave model includes a breakup temperature Tkin, the maximum collective velocities in the

in-plane and out-of-plane directions, the spatial anisotropy of the elliptic shape by fitting

STAR published v2 and spectra [75]. This model also assumes local charge conservation

and initial separation of balancing charges at freeze-out by fitting experimental results [25].

The difference between data and the blast-wave model predictions could be due to the finite

event plane resolution for the data.

The difference between the same-sign and opposite-sign three point correlator γαβ can
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be expressed as [74]

γp =
1

2
(2γ+− − γ++ − γ−−) =

2

M
[v2 < cb(φ) > +v2c − v2s], (6.7)

where

v2c =< cb(φ) cos(2φ) > −v2 < cb(φ) >,

v2s =< sb(φ) sin(2φ) >,

and the bracket represents

< f(φ) >=
1

M

∫
dφ
dM

dφ
zb(φ)f(φ).
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In this equation, v2 〈cb(φ)〉 will be positive if there are more charge pairs in-plane than

out-of-plane. v2c will be positive if the charge pairs are more correlated in-plane than out-

of-plane, while v2s will be negative if the charge pairs are more correlated on the in-plane

side.

Figure 6.31 shows the parity observable calculated from balance functions as well as its

three components. All data points are corrected for the event-plane resolution here. To com-

pare with previous results, we also plot the γP from STAR published data (figure 6.27) [76]

scaled by the measured uncorrected multiplicity in the same plot. Mathematically, the bal-

ance function result should equal the one from γP and they do agree well. Thus a thermal

blast-wave model [74] incorporating local charge conservation and flow reproduces most of

the signal.

Another topic of interest is the beam energy dependence of the CME. Recent calculations

show it only exists in the deconfined, chirally symmetric phase [72] and decreases with

increasing beam energy [77]. In addition, the CME effect should disappear at energies below

√
sNN = 10 GeV. Figure 6.32 shows the same parity observable calculated from balance

functions at
√
sNN = 200 , 62.4, 39, 11.5, and 7.7 GeV. We can see that, for all four

centralities shown here, the data show a smooth decrease with decreasing collision energy.

This smooth decrease differs from the CME calculation, which predicts an increasing signal

with decreasing beam energy and sharply disappearance of signal near the top energy of

SPS[77]. However, these results are consistent with the fact that v2 decreases smoothly with

decreasing beam energy in the same energy range.
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6.4 Balance Functions for Identified Kaons and Pro-

tons with RHIC Run 10 Data

In Section 6.1, we discussed the balance function for identified kaons using STAR’s Run 7

data. Here we continue the discussion of balance functions for identified kaons and protons

with RHIC Run 10 data. There are two major benefits of this new 200 GeV data set.

First, the TOF detector, which was not available during Run 7, was fully installed and

operational during Run 10. The usage of the TOF detector greatly enhanced STAR’s particle

identification ability. The identified kaons’ momentum range was extended from 0.2 < pt <

0.6 GeV/c (TPC only PID) to 0.2 < pt, p < 1.6 GeV/c (TPC+TOF PID), while the

identified protons’ momentum range was extended from 0.4 < pt < 1.0 GeV/c (TPC only

PID) to 0.4 < pt, p < 3.0 GeV/c (TPC+TOF PID). Second, due to new faster readout

electronics, more events were recorded during Run 10. In Section 6.1, about 28 million

events were analyzed, while here we report our results using 240 million Au+Au minimum

bias data recorded during the RHIC Run 10 period.

6.4.1 Balance Functions in Terms of ∆y

Figure 6.33 shows the balance functions for identified charged kaons pairs, for Au+Au col-

lisions at
√
sNN = 200 GeV for nine centrality bins as a function of the relative rapidity.

The balance function calculated from mixed events is zero for all centralities. The balance

functions calculated using shuffled events are substantially wider than the measured balance

functions. Again, a discontinuity around ∆y = 0.4 is visible in data at all centralities due

to φ decay. Model predictions show that inter-pair correlations should be significant for
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Figure 6.33: The balance function in terms of ∆y for identified charged kaon pairs from
STAR Run 10 Au+Au collisions at

√
sNN = 200 GeV for nine centrality bins.

∆y < 0.2 [60].

Note that the magnitudes of the balance functions in Figure 6.33 are much larger than

the magnitudes in Figure 6.3, which is due to the fact that the kaon acceptance is much

larger in Run 10 than in Run 7 because of the TOF detector.

Since the balance function is designed to measure the correlation between opposite-sign

charge pairs, it is sensitive to correlations such as decays. As discussed in Section 6.1, a peak

from the decay K0
s → π+ + π− is observed from pion balance function in terms of qinv. For

kaon pairs, a peak from the decay φ → K+ + K− is also observed. To better understand

the decay effect, Figure shows 6.34 shows the invariant mass distributions of identified pion,

kaon, and proton pairs from Run 10 Au+Au collisions. A mass peak around 0.5 GeV/c2

is observed in the π+π− invariant mass distribution, which corresponds to K0
s decay. For
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Figure 6.34: The invariant mass distribution of identified pion, kaon and proton pairs from
STAR Run 10 Au+Au collisions at

√
sNN = 200 GeV.

K+K−, a more visible peak from φ decay is also seen. For protons, no obvious mass peak

exists in the range plotted.

In order to reduce the φ decay contribution to the balance function, a suppression tech-

nique is applied to the balance function calculations. For each event, we calculate the

invariant mass of every K+K− pair, remove pairs that have an invariant mass between 1.01

and 1.03 GeV/c2, then calculate the balance function with the remaining pairs. This method

removes most of the φ decay daughters. However, this method also removes random pairs

that fall into the invariant mass range by chance. To compensate for this, we also applied

the same reduction to mixed events and use a mixed event subtraction to correct for it.
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Figure 6.35 shows the balance function in terms of ∆y for identified charged kaon pairs

after removal of the φ decays. The green hollow circles represent B(∆y) from raw data

(before mixed event subtraction) while the blue squares show results from mixed events. It

is clear that the removal of φ decay daughters, which removed about 21% of kaon pairs in real

data and 20% of kaon pairs in mixed events, has significantly decreased the balance function

results at small ∆y. This effect is larger in central collisions where the event multiplicity is

high and the probability of having K+K− pairs coincidentally fall into the φ mass range is

high. However, the final results after mixed event subtraction (red circles in Figure 6.35) are

smooth and independent of these effects.

Figure 6.36 shows the same balance function results after mixed events subtraction but

with a different scale. We can see that, different from Figure 6.33 and Figure 6.3, the

discontinuity around ∆y = 0.4 which means that the φ decay has been eliminated at all

centralities. HBT effects are still significant for ∆y < 0.2.

Figure 6.37 shows the balance functions for identified charged proton pairs for Au+Au

collisions at
√
sNN = 200 GeV for nine centrality bins as a function of the relative rapidity.

The balance function calculated from mixed events is close to but not equal to zero for all

centralities, which could due to the fact that more protons than anti-protons are produced

at this energy. The balance functions calculated using shuffled events are substantially wider

than the measured balance functions. A dip from inter-pair correlations is also observed at

∆y < 0.2.
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Figure 6.35: The balance function in terms of ∆y for identified charged kaon pairs after
removal of the φ. Data are from STAR Run 10 Au+Au collisions at

√
sNN = 200 GeV for

nine centrality bins.
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Figure 6.36: The balance function in terms of ∆y for identified charged kaon pairs after
removal of φ. Data are from STAR Run 10 Au+Au collisions at

√
sNN = 200 GeV for nine

centrality bins.
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Figure 6.37: The balance function in terms of ∆y for identified charged proton pairs from
STAR Run 10 Au+Au collisions at

√
sNN = 200 GeV for nine centrality bins.

6.4.2 Balance Functions in Terms of qinv

In Section 6.1.2, we discussed the balance function in terms of the Lorentz invariant mo-

mentum difference (qinv) between the two particles. Unlike the balance function in terms of

∆y, the balance function in terms of qinv is much less affected by the radial flow effect and

the contributions from decay feed down should be easier to identify and correct. Figure 6.38

shows the balance function for identified charged kaons in terms of qinv for Au+Au collisions

with Run 10 200 GeV data. Nine centrality bins are shown here, and all data points are

corrected by mixed event subtraction. Compared to Figure 6.8, the increased event number

and pt acceptance (TPC+TOF PID) significantly decreased the statistical uncertainty. The

overall normalization in Run 10 is also higher than Run 7 due to large pt acceptance. A peak

corresponding to the decay of φ → K+ + K− is still observed in each centrality bin. The
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Figure 6.38: The balance function in terms of qinv for charged kaon pairs from Au+Au
collisions at

√
sNN = 200 GeV in nine centrality bins. Solid lines correspond to a thermal

fit (Equation 6.1). Dashed lines are drawn to guide the eye.

HBT/Coulomb effects at low qinv is also observable, although it is relatively small compared

to the results from pion pairs. The balance functions from shuffled events are clearly different

than the balance functions for the data for all nine centrality bins.

To extract the width, which is possibly related to the system temperature, we fit the data

using a non-relativistic thermal distribution from Equation 6.1. The fitting range is chosen

to be 0.36 < qinv < 2.0 (GeV/c) in order to remove HBT/Coulomb effects and φ decay feed

down. The fits are shown in Figure 6.38. Although the fits looks reasonable, the χ2/ndf are

relatively large for most cases due to small error bars in data. The width extracted from fits

show a slightly narrower distribution at central collisions.
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Figure 6.39: The balance function in terms of qinv for charged proton pairs from Au+Au
collisions at

√
sNN = 200 GeV in nine centrality bins. Solid lines correspond to a thermal

fit (Equation 6.1).)

Figure 6.39 shows the balance functions for identified charged proton pairs in terms

of qinv. Unlike pions or kaons, there are no major resonances/unstable particles decay

into proton anti-proton pairs, resulting in no clear mass peak in B(qinv) distribution. The

HBT/Coulomb effects is still seen at low qinv. Again, we use the non-relativistic thermal

distribution from Equation 6.1 to fit data within 0.5 < qinv < 3.5 (GeV/c). The χ2/ndf is

still large for all centralities but better than the fits for kaons. This might due to the fact that

proton mass is larger than kaon mass, which would make this non-relativistic approximation

more realistic (m � T , T ∼ 0.1 GeV for kinetic freeze-out). The σs from the fits indicate

a wider balance function in central collisions. The shuffled events again differ significantly

from the real data for all centralities.
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Figure 6.40: Centrality dependence of the balance function widths for identified charged
kaons from Au+Au collisions at

√
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6.4.3 Balance Function Widths

In previous sections, we have discussed the balance function for identified kaons and protons

in terms of ∆y and qinv. To quantify the centrality dependence and compare with models,

here we extract the width using a weighted average from Equation 6.2. Since we have

discussed that the thermal fit for qinv has a relatively large χ2/ndf, we also calculated the

weighted average for qinv to show model independent results.

Figure 6.40 shows the balance function widths for identified kaons ∆y from Run 10

Au+Au collision at
√
sNN = 200 GeV. The results are plotted in terms of the number of

participating nucleons, Npart. To reduce the HBT/Coulomb effects, we calculated the width

for 0.2 ≤ ∆y ≤ 2.0. The width from measured data without φ suppression (red circles) shows
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√
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calculated using shuffled events.

no centrality dependence. The suppression of φ decays daughters, which removed extra cor-

relations at small ∆y, increases the balance function width for all centralities (green squares).

However, both cases show no centrality dependence from measured data. A UrQMD cal-

culation incorporating the experimental acceptance is also shown in the same figure. The

UrQMD widths are larger than data and increase with increasing centrality, which could

be due to the hadronic scattering incorporated in UrQMD. The shuffled events widths are

larger than both data and models and show no centrality dependence.

Figure 6.41 shows the balance function widths for identified protons in terms of ∆y at

√
sNN = 200 GeV from both Run 7 and Run 10 data. Since the TOF detector was not fully

installed before year 2009, the Run 7 data use the TPC as the only particle identification
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detector and has a momentum acceptance of 0.4 < pt < 1.0 GeV/c, while the Run 10

data used both the TPC and TOF as particle identification detectors and has an extended

momentum acceptance of pt > 0.4, p < 3.0 GeV/c. Both Run 7 data and shuffled events are

lower than Run 10 results due to the different acceptance. The statistical error in Run 7 is

also large due to smaller acceptance and fewer events, which makes it hard to determine the

centrality dependence. However, the Run 10 data show that the balance function width for

identified kaons increases in central collisions. The shuffled events are much wider but show

a similar trend. The increase of the shuffled events widths is due to the changing proton

momentum spectra as a function of centrality.

Figure 6.42 shows the weighted average from Equation 6.2 for identified charged kaons

from Au+Au collisions at
√
sNN = 200 GeV. This determination of the width of the balance
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function does not assume a functional form. A range of 0.36 < qinv < 2.0 GeV/c is chosen

to remove HBT/Coulomb effects and φ decay effects. Similar to the extracted widths from

the thermal distribution, the weighted average shows a slight decrease at central collisions.

while both UrQMD and shuffled events are much wider and increase in central collisions.
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Chapter 7

Conclusions and Outlook

In this paper, we present dynamical K/π, p/π, and K/p ratio fluctuations from Au+Au

collisions at
√
sNN = 7.7 to 200 GeV. Overall, no non-monotonic behavior is observed in

the energy dependence of fluctuations. The K/π fluctuations results show little energy

dependence, while the p/π, and K/p fluctuations results are negative and decrease with

decreasing collision energy. The energy dependence of p/π, and K/p can be understand in

terms of stronger resonance production at lower energies. However, the disagreement between

STAR and NA49 data for K/π and K/p is still under discussion and no conclusion can be

made yet. NA49 is a fixed target experiment and its acceptance changes dramatically as a

function of the incident energy. The fact that model comparisons between experiments using

the respective acceptance of the detectors agree indicate that simple acceptance effects along

can’t explain the differences between two experiments. Other effects such as NA49’s particle

identification method might introduce correlations and could be the source of disagreement.

We also discussed that simple multiplicity scaling failed to reproduce the energy depen-

dence of p/π and K/p fluctuations. For K/π fluctuation the question of whether the scaling
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holds is not conclusive due to the large statistical uncertainties at low energies. The failure

of multiplicity scaling is expected because it assumes that the only change with beam energy

is the system volume, which is not true because of effects like resonance production that

become more dominant at lower energies.

To study correlations introduced by hadronic process like resonance decay, separate sign

fluctuations are also measured. We observed that for all three cases, same-sign fluctuations

are negative and become more negative with decreasing energy. The origin of negative same-

sign fluctuations for K/π and K/p fluctuations is still under investigation since there is no

particle that directly decays to same-sign pairs. Processes such as associated production

could play an important role in K/π and K/p fluctuations.

We have measured the balance function for p+p, d+Au, and Au+Au collisions at
√
sNN =

200 GeV for all charged particles, identified charged pions, and identified charged kaons. We

observe that the balance functions in terms of ∆η for all charged particles and in terms of ∆y

and qinv for charged pions narrow in central Au+Au collisions. This centrality dependence

is consistent with trends predicted by models incorporating delayed hadronization. The

balance functions B(∆η) and B(∆y) can be affected by radial flow while the balance function

B(qinv) is largely unaffected by the implied reference frame transformation. We observe that

the system size dependence of the width of the balance function for charged particles scales

with Npart as was observed at
√
sNN = 17.3 GeV. In contrast, HIJING and UrQMD model

calculations for the width of the balance function in terms of ∆y or ∆η show no dependence

on system size or centrality.

For charged kaons we observe that the width of the balance function B(∆y) shows little

dependence on centrality for Au+Au collisions at
√
sNN = 200 GeV. This lack of dependence
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on centrality may indicate that strangeness is created early in the collision rather than in a

later hadronization stage. The fact that the width of the balance function for charged kaons

in terms of ∆y is independent of centrality was verified by removing φ decays using high

statistics data.

For both pions and kaons, the width of the balance function in terms of qinv decreases

with increasing centrality. This narrowing may be affected by the evolution of the kinetic

freeze-out temperature with centrality. This explanation is strengthened by the observation

that the widths of the balance functions for pions in terms of the two transverse components

of qinv, qout and qside, decrease in central collisions. However, more quantitative conclusions

require more complete theoretical studies.

A comparison with a blast-wave model [61] suggests that the balance function B(∆y)

for pion pairs in central Au+Au collisions at
√
sNN = 200 GeV is as narrow as one could

expect, as the model assumes that the balancing charges are perfectly correlated in coordinate

space at breakup. This correlation might be explained either by having the charges created

late in the reaction, thus denying them the opportunity to separate in coordinate space,

or having them created early, but maintaining their close proximity through very limited

diffusion. Whereas the first explanation is motivated by a picture of delayed hadronization,

the idea of limited diffusion is consistent with the matter having a very small viscosity,

which also requires a small mean free path. Furthermore, both these explanations account

for the observation that the balance function narrows with centrality, since the breakup

temperature, which determines the width, falls with increasing centrality. The additional

information provided here concerning the decomposition of the balance function into qout,

qside, and qlong may provide the basis for a more stringent test of competing theoretical
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pictures.

For the beam energy dependence, the balance function in terms of ∆η narrows in central

collisions for all the energies from 7.7 to 200 GeV. The balance function width 〈∆η〉 shows

a smooth decrease with increasing collision energy. This narrowing of the balance function

and along with the difference between data and the UrQMD model could be a signal of

onset of deconfinement or radial flow. A normalized width parameter is discussed. We find

that although designed to be independent of acceptance, the W parameter shows a strong

acceptance dependence. By applying the same acceptance cut, we find a good agreement

between STAR and NA49.

The reaction-plane-dependent balance function analysis gives the same difference between

the like-sign and unlike-sign charge dependent azimuthal correlations as the three point

correlator results published by STAR. A thermal blast-wave model incorporating local charge

conservation and flow reproduces most of the difference between like- and unlike-sign charge-

dependent azimuthal correlations. The good agreement between model and data indicates

that, unlike previous interpretation as possible local parity violation, most of the observed

signal is due to local charge conservation and flow. The reaction-plane-dependent balance

function results show a smooth decrease with decreasing collision energy, which contradicts

chiral magnet effect predictions but is consistent with the fact that event anisotropy v2

decreases with decreasing energy.
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