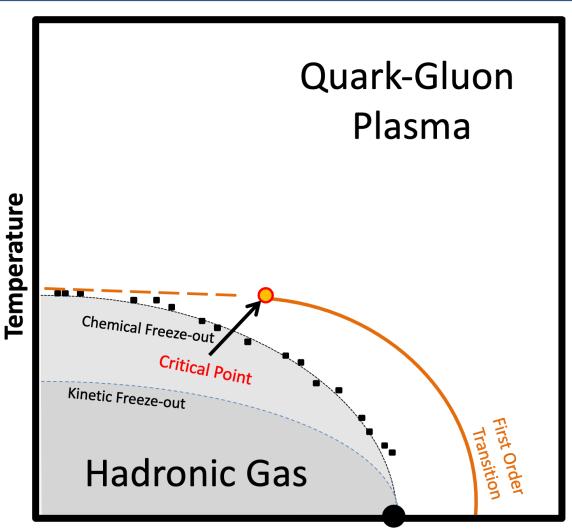
Status Report on the Analyses of Proton-Number Cumulants in the STAR Fixed-Target Program

Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan

11/30/23 Waikoloa Village, Hawaii Zachary Sweger
University of California, Davis
For the STAR Collaboration

This material is based upon work supported by the National Science Foundation under <u>Grant No. 1812398</u> (**Cebra and Calderón de la Barca**). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily represent the views of the National Science Foundation.

Phases of QCD Matter



QCD Phase Diagram

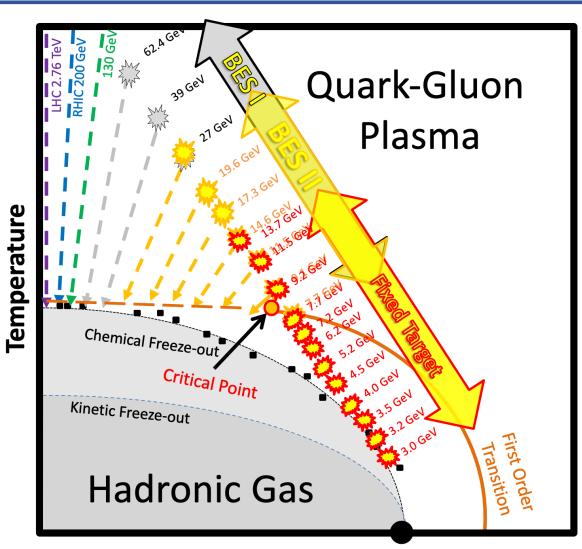
- Quarks and gluons experience confinement at low temperatures and densities.
- At high temperatures and densities, there is a deconfined phase, the quark-gluon plasma.

Beam Energy Scan (BES)

- BES program at the Relativistic Heavy-Ion Collider scans phase space of QCD matter by colliding gold ions at varying energies
- Seeking to map onset of deconfinement, and the predicted QCD critical point

Baryon Chemical Potential μ_{B}

Phases of QCD Matter



QCD Phase Diagram

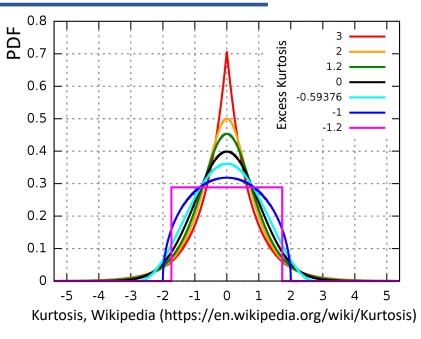
- Quarks and gluons experience confinement at low temperatures and densities.
- At high temperatures and densities, there is a deconfined phase, the quark-gluon plasma.

Beam Energy Scan (BES)

- BES program at the Relativistic Heavy-Ion Collider scans phase space of QCD matter by colliding gold ions at varying energies
- Seeking to map onset of deconfinement, and the predicted QCD critical point

Baryon Chemical Potential μ_{B}

Cumulants and Moments


Cumulants of a distribution are defined as

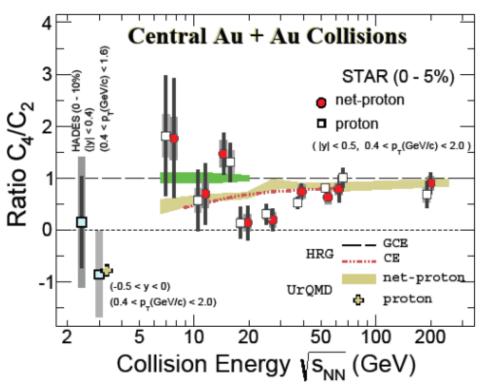
$$C_1 = \langle N \rangle \equiv \mu \text{ [mean]}$$

$$C_2 = \langle (N - \mu)^2 \rangle \equiv \sigma^2$$
 [variance]

$$C_3 = \langle (N - \mu)^3 \rangle$$

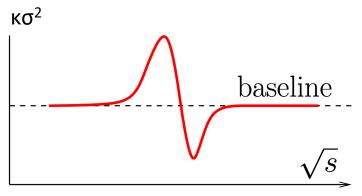
$$C_4 = \langle (N - \mu)^4 \rangle - 3\langle (N - \mu)^2 \rangle^2$$

The standardized moments of a distribution are


$$S\sigma = C_3/C_2 \; [{
m skewness}] \;\;\;$$
 measure of distribution's asymmetry

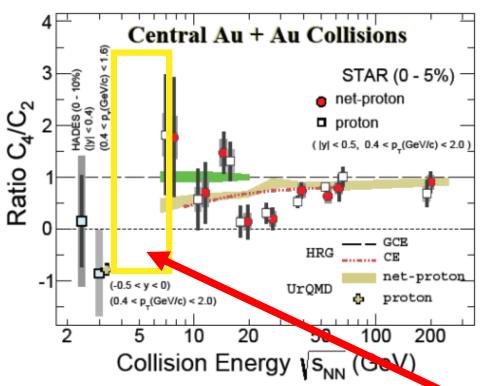
$$\kappa\sigma^2=C_4/C_2 \; [{
m excess \; kurtosis}] \;\; {
m measure \; of \; distribution's \; tails}$$

DNP 2023 Meeting


Current Status of Cumulants Analysis

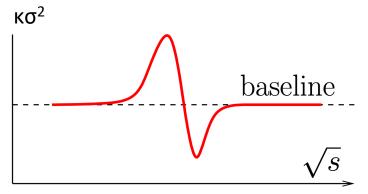
STAR, Phys. Rev. Lett. 128, 202303 (2022); arXiv: 2209.11940. Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Predicted Fluctuation in C₄/C₂ Near Critical Point



M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

- Non-monotonic collision-energy dependence of baryonnumber kurtosis predicted near critical point
- Non-monotonicity was observed in BES-I
- Recent measurement at 3 GeV demonstrates a return to the UrQMD baseline.
- High-statistics data with detector improvements have been taken from 7.7 GeV to 27 GeV in collider mode and 3.0 to 7.7 GeV with the Fixed Target program from BES-II


Current Status of Cumulants Analysis

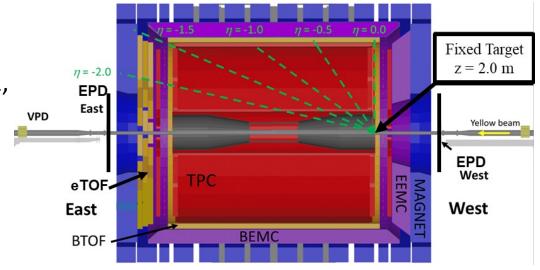
STAR, Phys. Rev. Lett. 128, 202303 (2022); arXiv: 2209.11940. Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Predicted Fluctuation in C₄/C₂ Near Critical Point

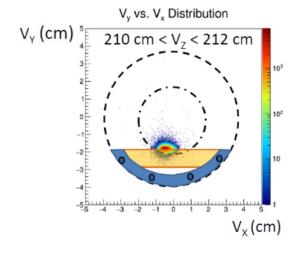
M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

- Non-monotonic collision-energy dependence of baryonnumber kurtosis predicted near critical point
- Non-monotonicity was observed in BES-I
- Recent measurement at 3 GeV demonstrates a return to the UrQMD baseline.
- High-statistics data with detector improvements have been taken from 7.7 GeV to 27 GeV in collider mode and 3.0 to 7.7 GeV with the Fixed Target program from BES-II

Fixed Target Program at STAR

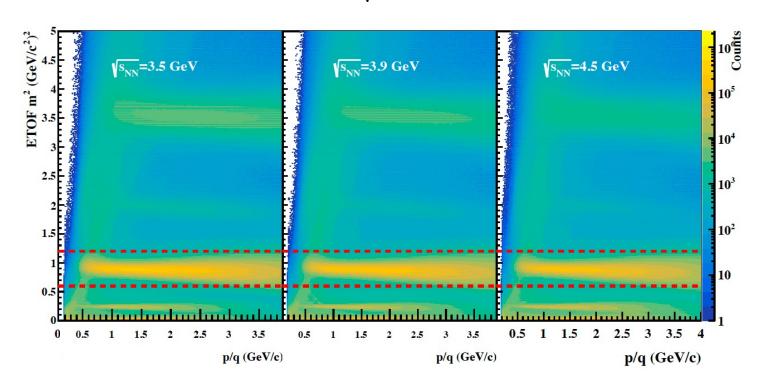


Fixed-Target (FXT) Program at STAR


- Test run with gold target in 2015
- First physics runs at $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV in 2018
- Now have data at $\sqrt{s_{NN}}$ of 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, and 7.7 GeV

Challenges for FXT

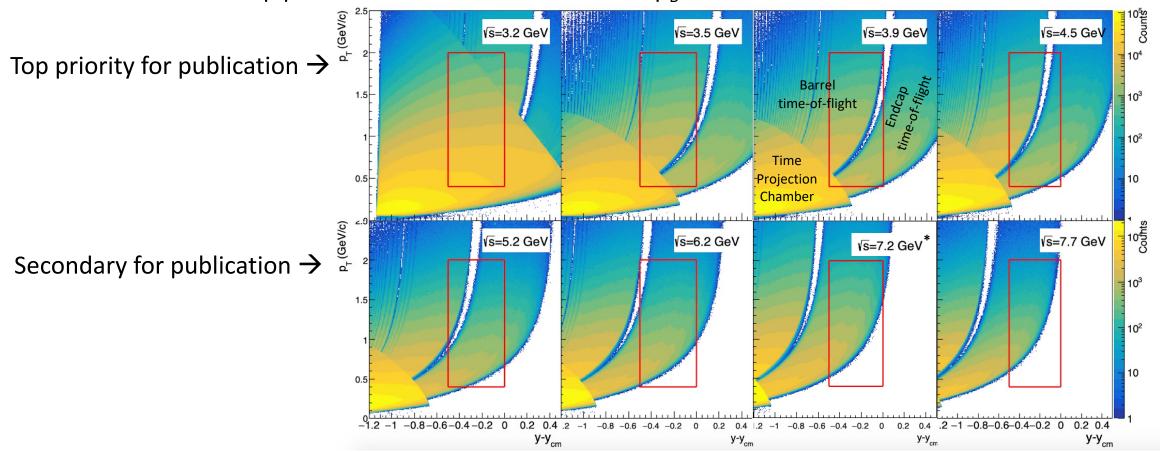
- Shifting asymmetric acceptance with respect to midrapidity with collision energy
- At 7.7 GeV, the midrapidity moves to edge of Time Projection Chamber (TPC) acceptance
- Boost at higher energies shifts particle identification (PID) to rely more on TOF than TPC



Endcap Time-of-Flight Detector

ETOF Details

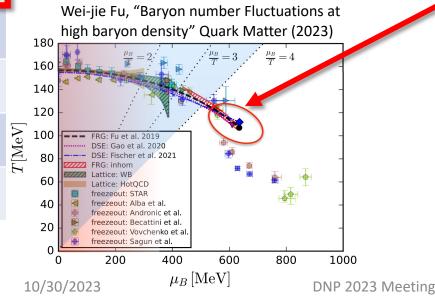
- CBM-TOF group provided ETOF system
- Provides particle identification over 1.55<η<2.2
- Collected data for the Fixed-Target Program
- Calibrations completed at $\sqrt{s_{NN}}$ = 3.5, 3.9, 4.5 GeV



Analysis Strategy

- Midrapidity analyses will be performed at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9, 4.5 GeV since we have near-full coverage over -0.5<y-y_{CM}<0 and 0.4<p_T<2 GeV/c
- At $\sqrt{s_{NN}}$ = 5.2, 6.2, 7.2, and 7.7 GeV proton cumulants will be analyzed away from midrapidity
 - \triangleright We can map proton cumulants as a function of μ_B

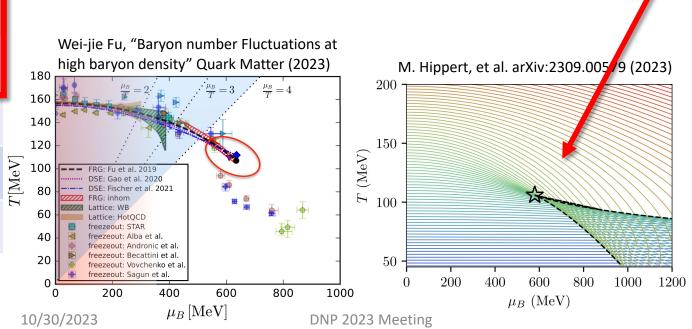
Nominal √s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589
5.2	541
6.2	487
7.2	443
7.7	420


From this year's 30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)

Nominal Vs (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589
5.2	541
6.2	487
7.2	443
7.7	420

From this year's 30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)

• Wei-jie Fu: "Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: $600 \lesssim \mu_B \lesssim 650$ MeV"

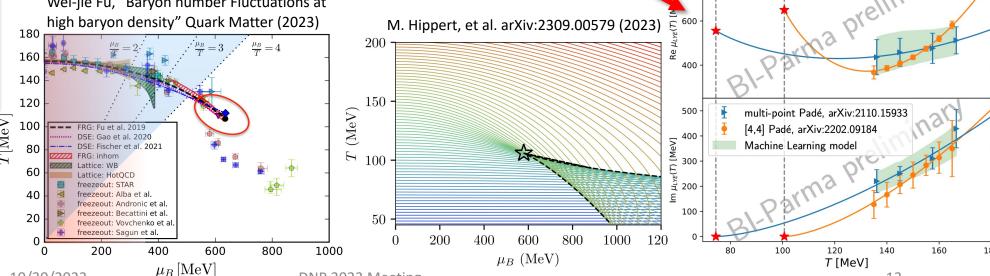


Nominal vs (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589
5.2	541
6.2	487
7.2	443
7.7	420

From this year's 30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)

- Wei-jie Fu: "Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600≤μ_B ≤650 MeV"
- Maurício Hippert: holographic Bayesian analysis gives 560≤μ_B ≤625 MeV

DNP 2023 Meeting

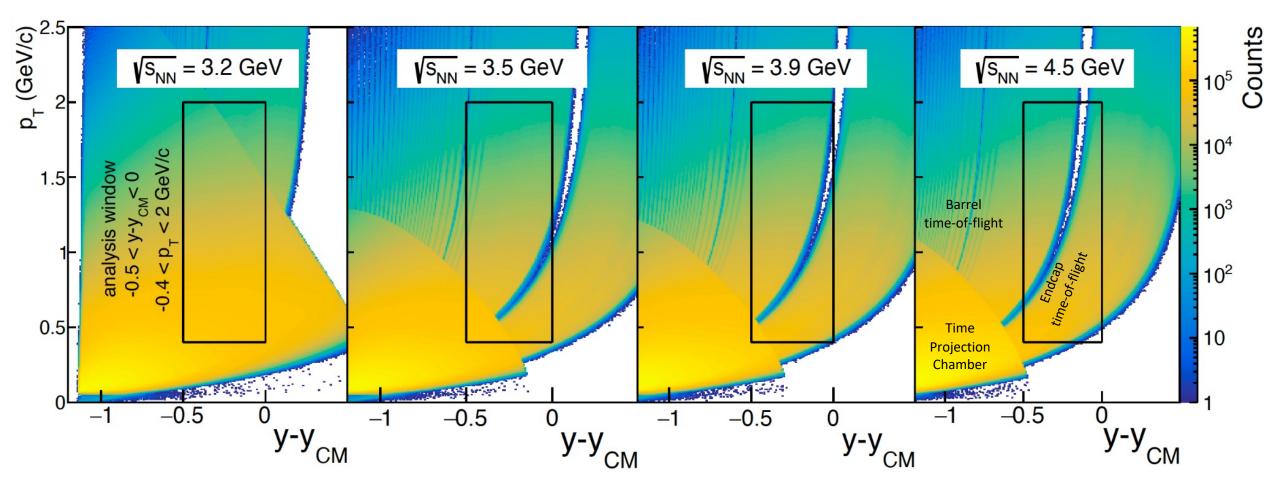

Nominal √s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589
5.2	541
6.2	487
7.2	443
7.7	420

From this year's 30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)

- Wei-jie Fu: "Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600≤μ_B ≤650 MeV"
- Maurício Hippert: holographic Bayesian analysis gives 560≤μ_B ≤625 MeV
- Jishnu Goswami: extrapolation using machine-learning model from hot QCD: $\mu_B \cong 600\pm 80$ MeV

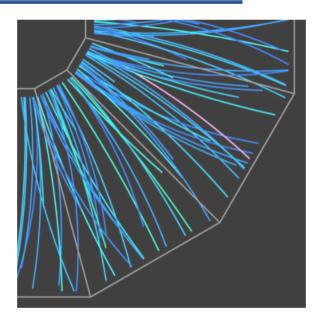
 Wei-jie Fu, "Baryon number Fluctuations at high baryon density" Quark Matter (2023)

 M. Hippert, et al. arXiv:2309.00579 (2023)

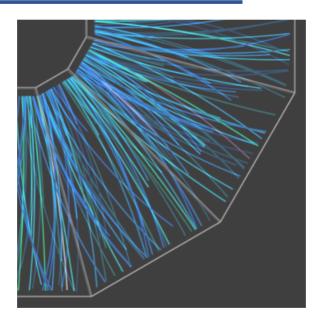


10/30/2023

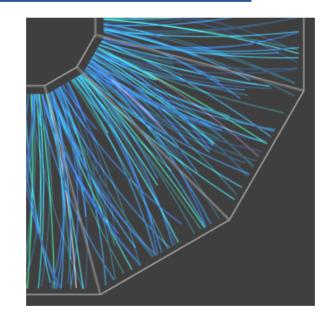
Detector Acceptances



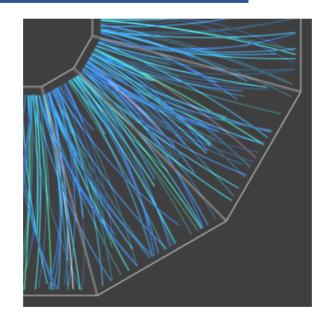
- We have near full acceptance in our analysis window (-0.5<y-y_{CM}<0, 0.4<p_T<2 GeV/c) up to 4.5 GeV
- We rely on much more time-of-flight for particle identification for $\sqrt{s_{NN}}$ = 3.5, 3.9, 4.5 GeV

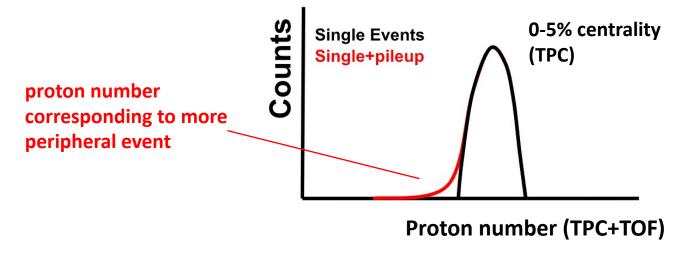


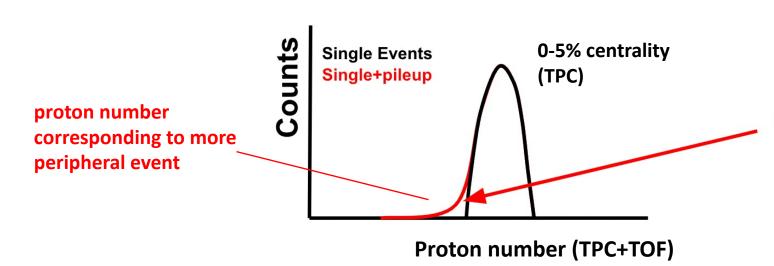
• STAR TPC has 40 μs drift time

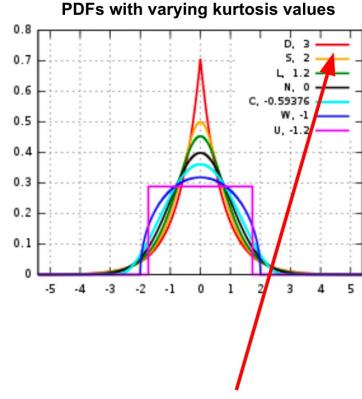


• STAR TPC has 40 μ s drift time \rightarrow occasionally a second collision will occur within that time

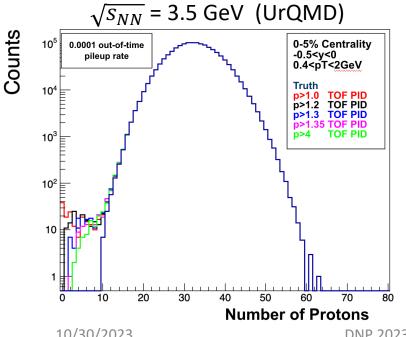



- STAR TPC has 40 µs drift time → occasionally a second collision will occur within that time
- Tracks from a second collision that are included in the event are known as pileup
- Time-of-flight (TOF) detectors use nanosecond-scale timing resolution to identify particles
- Pileup tracks which are out-of-time will often not be wellidentified by TOF

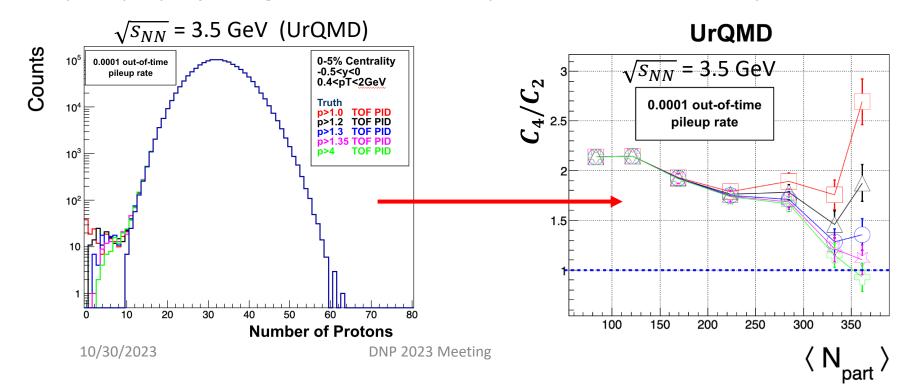

- When we use the time-of-flight for particle ID, protons from out-of-time pileup are not counted by the fast TOF
- The TPC still identifies all the pileup tracks
- Centrality is determined by the TPC multiplicity
- A pileup event may be classified as very central, but have few protons
- For each centrality bin, this leads to a low-proton-number tail



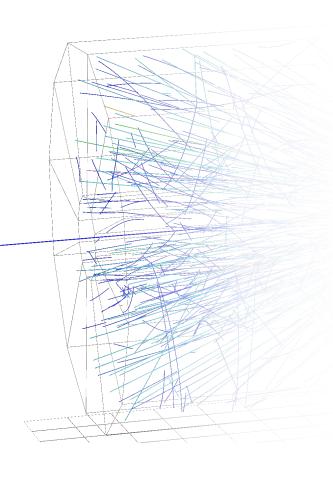
- When we use the time-of-flight for particle ID, protons from out-of-time pileup are not counted by the fast TOF
- The TPC still identifies all the pileup tracks
- Centrality is determined by the TPC multiplicity
- A pileup event may be classified as very central, but have few protons
- For each centrality bin, this leads to a low-proton-number tail
- Long tails mean large kurtosis



Large tails → **large kurtosis**



- We can simulate this in UrQMD by sampling two events at a rate of 0.0001
- In the experiment we use TOF PID for tracks above a certain momentum
- We can simulate this by only including pileup tracks with momenta below the threshold for using TOF
- The more TOF PID we use, the more the pileup causes a tail



- We can simulate this in UrQMD by sampling two events at a rate of 0.0001
- In the experiment we use TOF PID for tracks above a certain momentum
- We can simulate this by only including pileup tracks with momenta below the threshold for using TOF
- The more TOF PID we use, the more the pileup causes a tail
- This causes instability in C_4/C_2 and other cumulants
- Conclusion: remove pileup when using TOF for proton ID. Do not correct for it.
- We can remove pileup by rejecting events with discrepant TOF and TPC multiplicities

Conclusions and Outlook

- Recent data from the Fixed—Target Program will extend our knowledge of the proton cumulant ratios at low energies (3.2-7.7 GeV)
- Non-monotonic variation in proton higher moments would suggest proximity to a critical point in the QCD phase diagram
- Many theoretical approaches now suggest critical point is accessible in the STAR Fixed-Target regime
- Midrapidity measurements will be performed at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9, and 4.5 GeV
- Rapidity-dependent study will be done at $\sqrt{s_{NN}}$ = 5.2, 6.2, 7.2, and 7.7 GeV.
- The Fixed-Target analysis comes with unique challenges which we are working to understand