

Proton High-Order Cumulants Results from the STAR Fixed-Target Program

Zachary Sweger
University of California, Davis
(For the STAR Collaboration)
RHIC/AGS Users Meeting 2025, BES Workshop
Brookhaven National Lab

Supported in part by

Overview

- QCD Critical Fluctuations
- Beam Energy Scan II Results
- STAR Fixed-Target Program
- New Fixed-Target Results

Zachary Sweger 5/20/2025

Fluctuations in baryon number

8

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events sorted by centrality

https://www.bnl.gov/newsroom/news.php?a=214492

Fluctuations in baryon number

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events sorted by centrality
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar})

https://www.bnl.gov/newsroom/news.php?a=214492

A. Pandav (STAR collaboration), talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/

Fluctuations in baryon number

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events sorted by centrality
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar})
- Measure the mean, variance, skewness, kurtosis...

cumulants

$$C_1 = \langle N \rangle \equiv \mu \text{ [mean]}$$
 $C_2 = \langle (N - \mu)^2 \rangle \equiv \sigma^2 \text{ [variance]}$
 $C_3 = \langle (N - \mu)^3 \rangle$
 $C_4 = \langle (N - \mu)^4 \rangle - 3\langle (N - \mu)^2 \rangle^2$

standardized moments

$$S\sigma = C_3/C_2$$
 [skewness]
 $\kappa\sigma^2 = C_4/C_2$ [excess kurtosis]

A. Pandav (STAR collaboration), talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/

Fluctuations in Proximity to Critical Point

Predicted fluctuation in kurtosis near critical point

QCD Phase Diagram

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Fluctuations in Proximity to Critical Point

Predicted fluctuation in kurtosis near critical point

QCD Phase Diagram

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Fluctuation in kurtosis near critical point

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Comparison to Published BES-I Results

Published Results

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Fluctuation in kurtosis near critical point

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

STAR Beam-Energy Scan II Results

• Recent results from STAR BES-II high-moments shown at CPOD 2024

STAR Beam-Energy Scan II Results

STAR
25
YEARS

15

- Recent results from STAR BES-II high-moments shown at CPOD 2024
- Deviation from non-critical baselines at 19.6 GeV in C_4/C_2 at 2-5 σ

Recent work excludes at 2σ level, CP at μ_B <450 MeV (arXiv:2502.10267, 2025)

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

Recent work excludes at 2σ level, CP at μ_B <450 MeV (arXiv:2502.10267, 2025)

From Quark Matter 2023:

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

Recent work excludes at 2σ level, CP at μ_B <450 MeV (arXiv:2502.10267, 2025)

From Quark Matter 2023:

• W. Fu: "Recent studies of QCD phase structure... have shown convergent estimate for the location of CEP: $600 \lesssim \mu_B \lesssim 650$ MeV"

Wei-jie Fu, "Baryon number Fluctuations at high baryon density" BES Workshop (2023)

Recent work excludes at 2σ level, CP at μ_B <450 MeV (arXiv:2502.10267, 2025)

From Quark Matter 2023:

- W. Fu: "Recent studies of QCD phase structure... have shown convergent estimate for the location of CEP: $600 \lesssim \mu_B \lesssim 650$ MeV"
- M. H. Teixeira: holographic Bayesian analysis gives 560≤μ_B ≤625 MeV

Zachary Sweger 5/20/2025 BES Workshop

Recent work excludes at 2σ level, CP at μ_B <450 MeV (arXiv:2502.10267, 2025)

From Quark Matter 2023:

Chemical

Potential

μ_B (MeV)

697

666

632

589

√S

(GeV)

3.2

3.5

3.9

4.5

- W. Fu: "Recent studies of QCD phase structure... have shown convergent estimate for the location of CEP: $600 \le \mu_B \le 650$ MeV"
- M. H. Teixeira: holographic Bayesian analysis gives 560≤μ_B ≤625 MeV

Jishnu Goswami, "Exploring the Critical Points in QCD with Multi-Point Padè and Machine Learning Techniques in (2+1)flavor QCD" Quark Matter (2023)

120

T [MeV]

140

160

180

800

É 600 J

20 Zachary Sweger 5/20/2025 BES Workshop

The STAR Fixed-Target Program

Zachary Sweger 5/20/2025 BES Workshop

Fixed-Target Collisions at STAR

Fixed-Target (FXT) Program at STAR

- Test run with gold target in 2015
- First physics runs at $\sqrt{s_{NN}} = 3.0$ GeV and 7.2 GeV in 2018
- Now have data at 3.0–7.7 GeV

Challenges for FXT

- Shifting asymmetric acceptance w.r.t. midrapidity with collision energy
- At 7.7 GeV, midrapidity moves to edge of Time Projection Chamber (TPC) acceptance

This Fixed-Target Data

23

• This analysis looks at three datasets: 3.2, 3.5, 3.9 GeV

Data Set Details

$Nominal \sqrt{s_{NN}}$ (GeV)	Precision $\sqrt{s_{NN}}$ (GeV)	Beam Energy (GeV)	# Good Events	CoM Rapidity	Chemical Pot. $\mu_B \; ({ m MeV})$
3.2	3.208	4.593	201M	1.139	697
3.5	3.531	5.761	116M	1.254	666
3.9	3.918	7.309	117M	1.375	632

- We select events with vertex centered on target
- $V_z \sim 200 cm$
- $V_y \sim -2.2$ cm below beam-pipe center

Fixed-Target High-Moments Analysis Window

- Challenging acceptance: detector gaps simulated in UrQMD baseline
- Contamination from pions and deuterons limited
- >90% proton purity in each region of phase space

Fixed-Target High-Moments Analysis Window

- Challenging acceptance: detector gaps simulated in UrQMD baseline
- Contamination from pions and deuterons limited
- >90% proton purity in each region of phase space

Proton Identification

- STAR 25
- When pion and deuteron contamination is low, we can use energy-loss in the TPC to identify protons
- When the proton purity dips below 90%, we can use time-of-flight for PID

Endcap Time-of-Flight

STAR 25 VEARS

ETOF Details

- CBM-TOF group provided ETOF
- Provides precision particle identification over $1.55 < \eta < 2.2$
- Collected data for Fixed-Target Program

Out-of-Bucket Pileup

STAR 25

- In the Fixed-Target Program, only every 10th bunch was filled
- RHIC clock is 10 MHz, so each bucket is 100ns apart
- Each filled bucket arrives every 1µs
- TPC drift velocity is 5.5 cm/μs
- Pileup tracks from next filled bucket appear shifted by 5.5 cm
- With a 3cm DCA cut, high-rapidity pileup tracks would be counted in primary vertex

Out-of-Bucket Pileup

- We can remove much of this pileup by removing outliers in distribution of multiplicity with DCA<3cm vs. multiplicity with DCA<1cm
- Additionally, iTPC upgrade after 2018 allows us to decrease our DCA cut to 1cm
- This is different from the published 3 GeV cumulants (*PRL 126 092301*)

In-Bucket Pileup

• Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902)

In-Bucket Pileup

- Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902)
- At 3.2 GeV, no time-of-flight is used, so we can correct for pileup

In-Bucket Pileup

- Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902)
- At 3.2 GeV, no time-of-flight is used, so we can correct for pileup

• At 3.5 & 3.9 GeV, pileup is rejected by rejecting outliers in the multiplicity observed by TPC vs multiplicity observed by TOF

Fixed-Target Multiplicity for Centrality Determination

STAR 25

- In fixed-target, multiplicity includes tracks at all η
- FXTMult3: charged-particle multiplicity excluding protons
 - ☐ Distance of closest approach (DCA) to vertex of less than 1cm
 - ☐ Negatively-charged tracks
 - ☐ Low-momentum positive tracks, identified as non-protons
- Multiplicity fit with Glauber + 2-component model for centrality definition

Results

Zachary Sweger 5/20/2025 BES Workshop

Cumulants vs. Centrality

- Central C₃ is notably larger than UrQMD prediction
- Central C₄ is consistent with UrQMD

35

Cumulant Ratios vs. Centrality

• Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD

- Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD
- Compare against red UrQMD band with half-midrapidity window

- Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD
- Compare against red UrQMD band with half-midrapidity window
- Continuation of full midrapidity UrQMD (-0.5<y<0.5)
 shown in blue

- Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD
- Compare against red UrQMD band with half-midrapidity window
- Continuation of full midrapidity UrQMD (-0.5<y<0.5) shown in blue
- Significant enhancement of cumulants above baseline

C₃/C₁ shows no strong energy dependence, similar to UrQMD

- C₃/C₁ shows no strong energy dependence, similar to UrQMD
- κ_3/κ_1 monotonically increases, as predicted

- C₃/C₁ shows no strong energy dependence, similar to UrQMD
- κ_3/κ_1 monotonically increases, as predicted
- Significant deviations from non-critical baseline at C_3/C_1 and κ_3/κ_1

- C_4/C_2 right on baseline
- κ_4/κ_1 shows no strong energy dependence within uncertainties

Energy Scan of C_4/C_2

STAR 25

- Central C_4/C_2 is consistent with UrQMD -0.5<y-y_{CM}<0
- Systematics are greatly reduced relative to 3.0 GeV (PRL 126, 092301)

Significance of STAR Fixed-Target Results

STAR 25 YEARS

- Fixed-Target results have most significant deviations at κ_2/κ_1 and κ_3/κ_1
- Fourth-order deviations are $<3\sigma$

Conclusions

• STAR has measured central proton high-order (factorial) cumulants moments up to fourth order in fixed-target Au+Au collisions at 3.2, 3.5, and 3.9 GeV

• Systematic uncertainty at C_4/C_2 is greatly reduced compared with the

published 3 GeV result

• Central C_4/C_2 is consistent with non-critical UrQMD baseline

- Significant deviations observed at other orders
- Cumulants and factorial cumulants are monotonic or the monotonicity is inconclusive

Outlook

- 3 GeV was re-collected in 2021 after the iTPC upgrade and the addition of ETOF
- Full midrapidity (-0.5<y-y_{CM}<0.5) analysis can now be performed at 3 GeV, and systematic uncertainty may be reduced
- STAR may extract high-order cumulants at 4.5 GeV, but with larger acceptance gaps
- Interesting behavior at lower orders may be further explored by the CBM experiment at 2.9 4.9 GeV

BES Workshop

Thank you!

Zachary Sweger 5/20/2025 BES Workshop