Building Efficient Data Planner for Peta-scale Science

Michal Zerola¹ Jérôme Lauret³ Roman Barták² Michal Šumbera¹ ¹Nuclear Physics Institute, Academy of Sciences, Czech Republic ²Faculty of Mathematics and Physics, Charles University, Czech Republic ³Brookhaven National Laboratory, USA ACAT 2010, Jaipur STAR CFRJS

MICHAL ZEROLA (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

25.2.2010 1 / 18

Outline

Introduction

- Motivation
- FAQ
- Optimization
- Requested features
- 2 Implementation
 - Architecture
 - Planner
 - Requirements
 - Database schema
 - Data Mover

Conclusions

MICHAL ZEROLA (NPI, ASCR)

Exploiting remote sites and centers implicitly opens the question:

How to handle, control and efficiently use the resources?

- balance between being fair to the users and optimizing utilization
- random and uncoordinated access to the resources will hardly be optimal

(人間) とうり くうり

Exploiting remote sites and centers implicitly opens the question:

How to handle, control and efficiently use the resources?

- balance between being fair to the users and optimizing utilization
- random and uncoordinated access to the resources will hardly be optimal

Our research tackles the efficient data movement:

decoupling the data movement from job processing first

・ 同下 ・ ヨト ・ ヨト

Exploiting remote sites and centers implicitly opens the question:

How to handle, control and efficiently use the resources?

- balance between being fair to the users and optimizing utilization
- random and uncoordinated access to the resources will hardly be optimal

Our research tackles the efficient data movement:

decoupling the data movement from job processing first

Current goal

Create mechanism for efficient and controlled way of moving datasets (replicated) to the destinations in the fastest way

Michal Zerola (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

25.2.2010 3 / 18

- 4 @ ト 4 ヨト 4 ヨト

Exploiting remote sites and centers implicitly opens the question:

How to handle, control and efficiently use the resources?

- balance between being fair to the users and optimizing utilization
- random and uncoordinated access to the resources will hardly be optimal

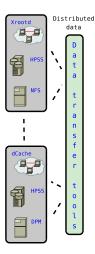
Our research tackles the efficient data movement:

decoupling the data movement from job processing first

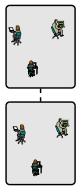
Current goal

Create mechanism for efficient and controlled way of moving datasets (replicated) to the destinations in the fastest way

 \Rightarrow combination of deliberative and reactive planning \Leftarrow


Michal Zerola (NPI, ASCR)

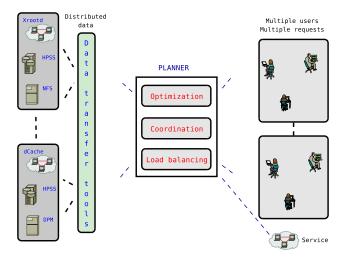
BUILDING EFFICIENT DATA PLANNER


25.2.2010 3 / 18

・ロト ・ 同ト ・ ヨト ・ ヨト

Situation

Multiple users Multiple requests



・ロト ・回ト ・ヨト ・ヨト

MICHAL ZEROLA (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

 Goal

MICHAL ZEROLA (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

 ▲ ■ ▶ ■
 ⇒ ○ ९ ○

 25.2.2010
 5 / 18

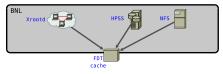
・ロト ・回ト ・ヨト ・ヨト

Are you building another Nth data transfer tool?

• No, we are building a mechanism sitting between users and existing efficient data transfer tools providing control, optimization and load-balancing.

Are you mirroring the topology and characteristic of the full network in your model?

• No, the model is based on approximation of the latencies/bandwidth and is from its startup point self adaptive to the environment.


Can I use my own planner or fair-share policy?

• Yes, all decision-making modules are separate independent plugins.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Two levels of optimization:

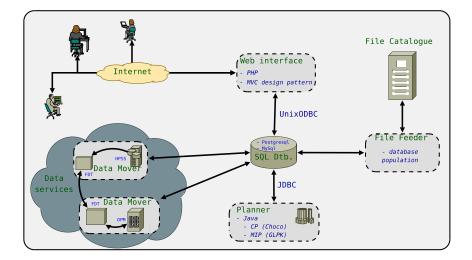
Among data services (sharing the data)

Among sites - data centers (geographically spread)

7 / 18

Control:

- respect different user priorities and usage history
- support any queue-based fair share policy
- provide estimates and status for the users

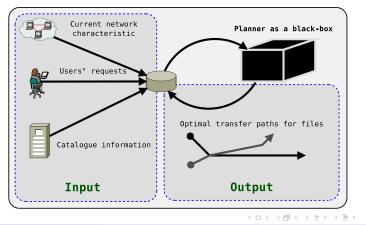

Load balancing:

- prevent uncontrolled access and overloading of resources
- load balancing of storage elements and network

Adaptability:

- proper balance between reactive and deliberative planning
- adapt to the network or service changes automatically

Architecture

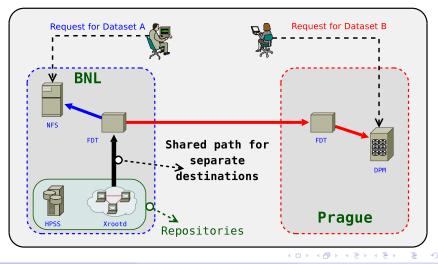

25.2.2010 9 / 18

Planner

Constrained based, two approaches:

- Constraint Programming (Choco)
- Mixed Integer Programming (GLPK)

Fast, short-term deliberative planning

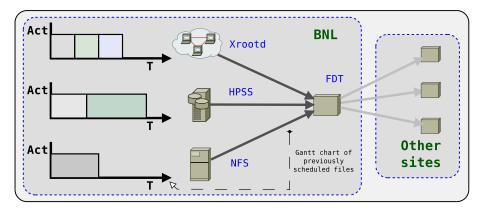

MICHAL ZEROLA (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

25.2.2010 10 / 18

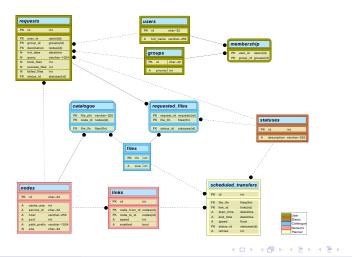
Requested features

- resources should be used effectively
- objective: minimize time to bring files to the users


MICHAL ZEROLA (NPI, ASCR)

Building Efficient Data Planner

25.2.2010 11 / 18

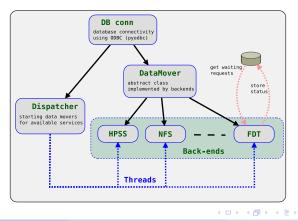

Requested features (cont.)

- use information about links usage from previously scheduled transfers
- avoid creating bottlenecks

Database schema

most exposed parts: 10⁵ - 10⁶ records in STAR
support for *MySQL (InnoDB)* and *Postgresql*

MICHAL ZEROLA (NPI, ASCR)

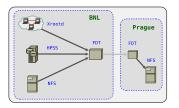

Building Efficient Data Planner

 ≤
 ≥

 </th

Data Mover

- distributed component, using efficient and existing transfer tools
- running at each computing center, implemented in Python
- back-ends for available services realize the transfers
- works in a reactive way, following the computed plan



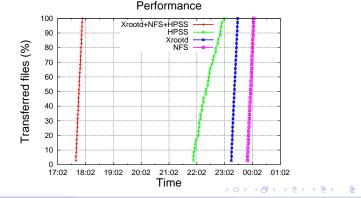
MICHAL ZEROLA (NPI, ASCR)

Building Efficient Data Planner

25.2.2010 14 / 18

- moving data set to the single destination NFS location in Prague
- every file from the dataset available at **HPSS**, **NFS** and **Xrootd** service in BNL

• matrix for success is to be limited by WAN speed alone


15 / 18

Show case - comparison

Planner was set up to reason about:

all services (HPSS, NFS, Xrootd) as possible data sources,

- 2 only HPSS (slow),
- 3 only NFS (fast),
- I only Xrootd (fast)

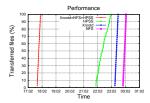
The use of resources was: HPSS - 19%, NFS - 38%, Xrootd - 43%

Michal Zerola (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

25.2.2010 16 / 18

Show case - conclusion


Remarks:

- Files are usually not all on NFS (central storage reserved for ongoing data production in STAR, not past data production series)
- Users would have to grab files from Xrootd or HPSS
 - Xrootd would create a load and impact analysis our system provides immediate relief without sacrifice of the transfer plan time
 - HPSS stress and frequent access to HPSS hence tape access could

be damaging to tape (wear-out) + competes with other

access (production sync to HPSS)

Our system balances resources in an adaptive fashion.

イロト イポト イヨト イヨト

Ultimately

Utilizing all resources brings the same performance as relying only on the fastest one (NFS/Xrootd) while bringing load-balancing, control and redundancy.

MICHAL ZEROLA (NPI, ASCR)

BUILDING EFFICIENT DATA PLANNER

25.2.2010 17 / 18

Conclusions

Status:

- planner, database, web interface are prepared and functional
- performance of the pure planner extensively studied and tested in simulated environment
- all components are functional and installed in STAR, currently running tests

Perspectives:

- implement multi-site transfers: we expect similar benefits in balancing
 - immediate relief to the Tier-0 center
 - self-adaptive capabilities will determine the best transfer path
 - data integrity benefits for "free"

Summary:

- the concept of controlled and efficient data movement brings:
 - better efficiency due to intelligent planner
 - controlled coordination
 - Ioad-balancing

Michal Zerola (NPI, ASCR)

イロト イポト イヨト イヨト

Conclusions

Status:

- planner, database, web interface are prepared and functional
- performance of the pure planner extensively studied and tested in simulated environment
- all components are functional and installed in STAR, currently running tests

Perspectives:

- implement multi-site transfers: we expect similar benefits in balancing
 - immediate relief to the Tier-0 center
 - self-adaptive capabilities will determine the best transfer path
 - data integrity benefits for "free"

Summary:

- the concept of controlled and efficient data movement brings:
 - better efficiency due to intelligent planner
 - controlled coordination
 - Ioad-balancing

Thank you!

MICHAL ZEROLA (NPI, ASCR)

Building Efficient Data Planner

25.2.2010 18 / 18

イロト イヨト イヨト