

Thermal Photons and Dileptons in Heavy-Ion Collisions

RIKEN BNL Research Center Workshop August 20-22, 2014 at Brookhaven National Laboratory

Future Dilepton Measurements at STAR

Frank Geurts Rice University

Outline

- STAR dielectron results: a brief summary
- Immediate Future: 2014-2016
 - STAR detector upgrades
 - dilepton physics
- Beam Energy Scan, 2nd Phase: 2018-2019
 - dilepton measurements
 - proposed detector upgrades
- Outlook

The STAR experiment

Large & uniform acceptance electron ID $|\eta| < 1$ and $0 < \phi < 2\pi$

- Time Projection Chamber
 - tracking, dE/dx PID
- Time-of-Flight detector
 - removal of "slow" hadrons
 - improves electron purity
- Electromagnetic Calorimeter
 - high- p_T trigger
- Fast data acquisition

Brief Summary

Current state of dielectron measurements at STAR

• At this workshop

- dielectron production and elliptic flow at 200 GeV (Xin Dong)
- direct virtual photon production at 200 GeV (Bingchu Huang)
- dielectron production from RHIC BES (Joey Butterworth)

• At QM'14

- 3 parallel talks (Patrick Huck, Chi Yang, Wangmei Zha)
- 8 posters (Joey Butterworth, Yi Guo, Kefeng Xin, Ota Kukral, Barbara Trzeciak, Robert Vertesi, Qian Yang, Guannan Xie,)
 - incl. low-mass dimuons based on TPC+TOF!

Dielectron Production at 200GeV

p+p baseline: 2012 much improved statistics

Au+Au: 2010+2011 combined statistics

good description by hadron cocktails

 ➢ no strong p_T or centrality dependence of the low-mass enhancement
 ➢ indications of modified charm in intermediate mass range

Dielectron Elliptic Flow at 200GeV

Combined statistics of Au+Au runs in 2010 and 2011 (760M)

precision still limited

v₂(p_T) consistent with simulations & measurements

- v₂(M_{ee}) is consistent with cocktail simulations
 - Increase statistics
 - Disentangle charm contributions

Direct Virtual Photon at 200GeV

STAR measurements compared to PHENIX p+p T_{AA}-scaled fit:

- Consistent with high-p_T p+p reference
 - dominated by initial hard scattering
- Excess for $1 < p_T < 5$ GeV/c
 - dominated by QGP

Large uncertainties for p_T < 2GeV/c
 – Lack of η measurements at low p_T

BES Dielectron Production

Systematic measurement of dielectron production from top RHIC energies down to SPS energies

\succ Cocktail + Model contributions consistent with measurements (M_{PP} and p_T)

F. Geurts (Rice Univ.)

QM2014

Immediate Future: 2014-2016

- RHIC upgrades
 - fully implemented stochastic cooling
- STAR upgrades
 - Heavy Flavor Tracker
 - Muon Telescope Detector
 dedicated muon triggers: e.g. *e*-muon
- 2014: Au+Au statistics
 - 200 GeV: 1.2B events
 - 14.6 GeV: 20M events
- 2015: p+p (9wks), p+Au,Si (5+2wks)
- 2016: Au+Au (10wks)

Heavy Flavor Physics

Open Heavy Flavor

- HFT optimized for D⁰ reconstruction in the p_T range where hydro flow is dominant
 - R_{AA} for D⁰ from fully topological reconstruction (cτ≈120µm)
- <u>Charmonium</u>
- MTD Dimuon trigger
- Combination of HFT and MTD significantly improves direct J/ψ measurements
 - measure B→J/ψ→μμ by combining HFT, TPC, and MTD (cτ≈500μm)
- MTD Y(1S, 2S, 3S) measurements
 - Y->e⁺e⁻ significant bremsstrahlung losses
 → large tail
 - Y-> $\mu^+\mu^-$ channel less affected

MTD Dilepton Physics

Significant charm contribution spanning both intermediate and low mass range

- especially relevant in LMR at high energies
- Distinguish thermal and charm production
- use e-µ correlation to get a handle on charm contributions

Dimuon continuum:

- LMR: vector meson in-medium modifications
- IMR: radiation from QGP
- Dimuon elliptic flow

STAR Beam Energy Scan Program

Objectives:

- search for threshold energies for QGP signatures
- search for signatures of 1st order phase transitions
- search for a Critical Point
- Vary beam energy \implies vary (T, μ_B)
- STAR: a mid-rapidity collider experiment
- uniform acceptance
- uniform particle ID

F. Geurts (Rice Univ.)

BES Phase 1: 2010-2011, 2014

of central collisions in Ref. [19]. The 200 GeV is also listed in the table as a reference.								
Beam Energy	Baryon Chemical	Year of	Event Statistics	Beam Time				
(in GeV)	Potential (in MeV)	Data Taking	(Millions)	(Weeks)				
200	20	2010	350	11				
62.4	70	2010	67	1.5				
39	115	2010	130	2.0				
27	155	2011	70	1.0				
19.6	205	2011	36	1.5				
14.5	260	2014	20	3.0				
11.5	315	2010	12	2.0				
7.7	420	2010	4	4.0				

Table 1. An overview of Beam Energy Scan Phase-I. The μ_B values are estimated from the systematics

Many BES Phase-1 results published or shown at QM'14

cf. Nu Xu's plenary presentation

\blacktriangleright Large $\mu_{\rm B}$ gap between 7.7 and 11.5GeV

- > For some results, however, strength of conclusions limited to uncertainty in measurements
 - R_{CP} , ϕ -meson v_2 , proton v_1 , net-proton kurtosis, CME, asHBT
 - LMR and IMR dielectrons

BES Phase 1: Dielectrons

- LMR (M_{ee}<1GeV/c²): inmedium broadened ρ, model results consistent with data
 - driven by the baryon density
- IMR (1 < M_{ee} < 3 GeV/c²): thermal radiation
 - not enough statistics for meaningful results

> Need more statistics!

BES Phase 2 Proposal

Studying the Phase Diagram of **QCD** Matter at RHIC A STAR white paper summarizing the current understanding and describing future plans 01 June 2014 5 Gel

Collision Energy (GeV)	7.7 420	9.1 370	11.5 315	14.5 260	19.6 205	
u_B (MeV) in 0-5% central collisions						
Observables						
$\overline{R_{CP}}$ up to $p_T = 5 \text{ GeV}/c$	-		160	125	92	
Elliptic Flow (\$\$ mesons)	100	150	200	200	400	
Chiral Magnetic Effect	50	50	50	50	50	
Directed Flow (protons)	50	75	100	100	200	
Azimuthal Femtoscopy (protons)	35	40	50	65	80	
Net-Proton Kurtosis	80	100	120	200	400	
Dileptons	100	160	230	300	400	
Required Number of Events	100	160	230	300	400	

- Proposed statistics mainly driven by φ-meson v₂ and dilepton measurements
- Dilepton statistics should reach similar uncertainties as at Vs_{NN}=200 GeV

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

TPD RBRC Workshop - BNL Aug.'14

BES Phase 2: Dileptons

Precision Measurements for Vs_{NN}<20GeV $dN/dy|_{\pi}$ 105 0.3 52.8 57.6 60.8 77.2 0.15 ~ 4.5 ₀)/N₀ for M=[0.2-0.7] GeV/c Au+Au LMR Excess Yield / dN/dy| $_{\pi}~(imes$ 10⁻⁵) **BES-II** extrapolation 4 0.25 model expectation at BES-II 00-05% 40-50% 3.5 data $(\mu^{+}\mu^{0.2})/(d+d)$ 70-80% 0.1 3 PHSD 2.5 2 1.5 0.05 ₿ ♚ 1 LMR: 0.30 < M_{ee} < 0.70 GeV/c² 200 GeV: [arXiv:1312.7397] BES: STAR Preliminary 0.05 0.5 **STAR Preliminary** 0 10 20 40 60 100 200 $\sqrt{s_{NN}}$ (GeV) 10^{2} 7 10 √s_{NN} (GeV)

- LMR :: study total baryon density dependence
 CERES: Pb+Au @ 40 AGeV
- IMR :: determine how this range may transition and match to the LMR $p_{\rm T}$ slopes

BES: Critical Point?

- Dilepton yields sensitive to life time of the system
 - close to Critical Point, expect increase in correlation lengths
 - critical slowing down? *anomalous* increase in the lifetime of the fireball?

Can we observe this in an increase of the rates?

Rapp, Adv. High Energy Phys. 2013 148253 NA60 life time measurement with uncertainty ±1 fm/c (ρ clock)

STAR BES (19.6 – 200 GeV)

- no critical slowing-down in calculations
- smooth increase from 8–10 fm/c

10 19.6 GeV STAR Preliminary 27 GeV STAR Preliminary **39 GeV STAR Preliminary** 62.4 GeV STAR Preliminan in-medium OGP cocktail + model cocktail data 0.2 0.4 0.6 0.8 1 0 0.6 0.8 1 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.2 0.4 0.6 0.8 invariant dielectron mass, Mag (GeV/c²)

BES Phase 2: Upgrades

- RHIC e-cooling for low energy operation
- ⇒ higher luminosity
 - at 7 GeV : 2-5x
 - at 20 GeV: 8-20x
- Proposed STAR detector upgrades
 - Event Plane Detector
 - ► iTPC

center of mass energy [GeV]

iTPC Upgrade

- STAR TPC:
 - 24 sectors (12 on each side)
 - design choice (1990s):
 - small pads for good 2-track resolution in Inner Sector
 - large pads for good dE/dx in Outer Sector
- Proposed Inner Sector upgrade:
 - more pad rows
 - larger pads

Physics Motivation

- Increase η coverage for hadron acceptance and correlations
 - high-η coverage for fixed-target datasets
- Improve low-p_T coverage for hyperon reconstruction and weak-decay reconstruction
- Improve dE/dx resolution for particle identification
 - improve high- p_T identified hadron spectra and correlations (jet studies)
- Spin structure measurements in polarized p+p
 - improve forward tracking with FGT/EEMC
 - interference fragmentation functions at high x
 - y-dependence of Λ hyperon polarization
- But also
 - reduce space-charge distortion (induced by charge leak from Gating Grid)
 - eliminate concerns about wire-aging issues

iTPC & Dilepton Measurements (1)

iTPC & Dilepton Measurements (2)

Outlook

- The TOF detector, 2010, kicked off STAR's dielectron program
 - e⁺e⁻ top energy spectra, e⁺e⁻ v₂, direct virtual photon, systematic measurements of LMR excess
 - Beam Energy Scan Phase 1 allowed for a systematic measurement of the LMR excess from top RHIC down to top SPS energies
- The MTD, now, marks the start of STAR's muon detection capabilities
 - 2014 2016: high statistics Au+Au, p+p, and p+A
 - dilepton program: revisit top energies, disentangle charm, dimuon continuum, charmonium
- BES Phase 2 (2018-2019): systematic dilepton measurements down to Vs_{NN}=7.7 GeV
 - measure baryon density dependence
 - measure p_T slopes both in LMR and IMR
 - look for anomalous increases in yield, suggestive of a critical point