

STAR

Introduction:

- Strangeness chemical equilibration is achieved at RHIC, but ...
 - □ To what extent?
 - □ Does it vary with system size?
 - □ Can we disentangle the canonical suppression?
 - □ What about the rapidity range?
- STAR has a large amount of data, with different particles, at different centralities and in different collision systems.

STAR

Statistical Thermal Model

- Statistical Thermal Model (THERMUS)^{*} was used fitting T_{ch} , μ_B , μ_S , and γ_S (strangeness saturation factor).
- Particles used in the fit:
- $\pi, K, p, \Lambda, \Xi, \Omega$ and ϕ .

* Thermus, A thermal Model Package for Root S. Wheaton & Cleymans, hep-ph/0407174

Feed-down corrections:

Pion yields

Weak decay feed-down contributions are subtracted.

- Proton yields
 - \Box Λ decay feed-down is subtracted, considering inclusive Λ 's.
 - $\Box \Sigma$ decay feed-down needs to be studied.
- Lambda yields
 - $\Box \equiv$ decay feed-down is subtracted.
- ng Ratio Ω decay is negligible. ($\Omega/\Lambda \sim 0.01$) $\pm 0.05)\%$ $\pm 0.5)\%$ Ξ yields $\pm 0.30\%$ $\pm 0.30\%$ Ω decay feed-down is negligible. BR 8.6 % $\pm 0,005)\%$ $\rightarrow \Lambda + \pi^{-}$ Ξ^{-} 4,91 cm $(99,887\pm0.035)\%$ Ξ^0 $\rightarrow \Lambda + \pi^0$ 8.71 cm (99,523±0,013)% $\rightarrow \Lambda + K^{-}$ 2,461 cm $(67,8\pm0,7)\%$

Feed-down correction of protons from the Sigma

Effect of feed-down on thermal parameters

Thermal parameters has small variation in the range consistent with the feed-down correction uncertainty of the protons.

 $\Delta T = 5 MeV(3\%), \Delta \mu_B = 0.005, \Delta \mu_S = negligible, \gamma_S = 1$

Chemical freeze-out T_{ch} vs. system size

 Au+Au 200 GeV Temperature seems constant with system size.

 Cu+Cu 200 GeV Temperature is in agreement with Au+Au 200 GeV (within error bars).

Thermus, a thermal Model Package for Root S. Wheaton & Cleymans, hep-ph/0407174

Baryon chemical potential μ_B vs. system size

- ${\scriptstyle \bullet}$ Baryon chemical potential ${\mu}_{B}$ is small.
- Small variation with system size.
- Cu+Cu 200 GeV baryon chemical potential seems to be in good agreement with Au+Au 200 GeV.

- * Thermus, a thermal Model Package for Root
- S. Wheaton & Cleymans, hep-ph/0407174

Strangeness saturation γ_s vs. system size

* Thermus, a thermal Model Package for Root S. Wheaton & Cleymans, hep-ph/0407174

- Strangeness saturation constant, shows an increase with system size, reflecting the increase of strangeness enhancement.
- Cu+Cu 200 GeV data consistent with Au+Au 200 GeV result.
- Deviates from 1 for systems smaller than N_{part} < 100.

Chemical freeze-out volume vs. system size

* Thermus, a thermal Model Package for Root S. Wheaton & Cleymans, hep-ph/0407174

- Volume at Chemical freeze-out was determined using pion yields.
- Relative volume of the fireball at chemical freeze-out in Cu+Cu collision is higher than in Au+Au collision, for the same equivalent N_{part}.
- Higher strange particle yields observed in Cu+Cu compared to Au+Au (Ant. Timmins talk) is related to the volume at CF, so not to N_{part}.

Canonical Suppression effect

- How does strangeness production get affected by the canonical radius?
- Can we tell we have indication of canonical suppression?

Rapidity distributions

BRAHMS data: PRL94_162301 (2005) & PRL93_102301 (2004) Hijing: X.N. Wang and M. Gyulassy: Comput. Phys. Commun., 83:307, 1994.

Ratios vs. Rapidity

- Hijing and Gaussian distributions describe quite well the particle ratio rapidity dependence for |y|<3.5.
- But, different parameterizations disagree for |y|>4.

BRAHMS data: PRL94_162301 (2005) & PRL93_102301 (2004) Hijing: X.N. Wang and M. Gyulassy: Comput. Phys. Commun., 83:307, 1994.

Thermal fit results vs. Rapidity

- Temperature constant up to y=3.
- μ_B shows increase with rapidity.
- For rapidity integr. yields using Gauss: $T=144\pm 8$ MeV, $\mu_B=53\pm 16$ MeV
- For rapidity integr. yields using Hijing: $T=156\pm 8$ MeV, $\mu_B=79\pm 19$ MeV

Thermal fit results vs. Rapidity

- μ_S shows increase with rapidity, Hijing extrapolation shows no variation with rapidity in the studied range.
- γ_S constant with rapidity, up to y=3.
- For rapidity integr. yields using Gauss: $\mu_S = 14 \pm 4 MeV$, $\gamma_S = 0.91 \pm 0.12$
- For rapidity integr. yields using Hijing: $\mu_S = 7 \pm 4 MeV$, $\gamma_S = 0.79 \pm 0.12$

Conclusions:

17/17

- Strangeness is chemically equilibrated at RHIC energies.
- Thermal parameters are constant for a wide range:
 - Centrality: System with N_{part} >100 is well described using GC approach with γ_s =1.
 - **Rapidity:** at RHIC energies, thermal fit Temperature constant up to Y=3; μ_B shows increase with rapidity.
- Canonical approach shows strong increase of strange particles with R_c, except for the phi-mesons. Fits to Au+Au data results in R_c values where canonical suppression is no longer relevant.
- Cu+Cu and Au+Au: Results of thermal model fits indicate that the freeze-out volume formed in Cu+Cu collision is higher than that in Au+Au collisions with the same initial condition.

Comparing different thermal model conditions:

- Particles ratios still well described with GC ensemble.
- Canonical ensemble describes identical particle ratios, Lambdas and Omega better.

Rapidity distributions

Varying the strange particle used in the thermal fit

arXiv:nucl-th/0612033v1: Local and Global strangeness inhomogenuities at freeze-out conditions. PRC_73_024902: Inhomogeneous freeze-out in relativistic heavy ion collisions.

Summary of thermal model study

 Statistical Thermal model fits reasonably well the particle ratios measured in STAR, indicating that data is consistent with a thermalized system.

- Au+Au 200 and 62 GeV: Centrality dependence of thermal fits show increase of γ_s parameter, consistent with strangeness enhancement seen in the data yields.
- Cu+Cu200 GeV: yields the same temperature and baryon chemical potential values obtained from the fit to Au+Au data.
- Strangeness Canonical approach seems to yield better agreement with our data.