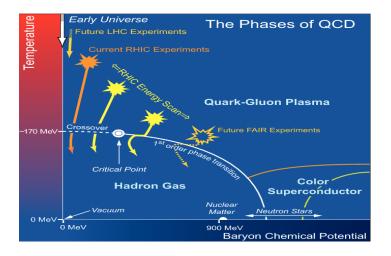


Beam-energy dependence of the viscous damping of anisotropic flow

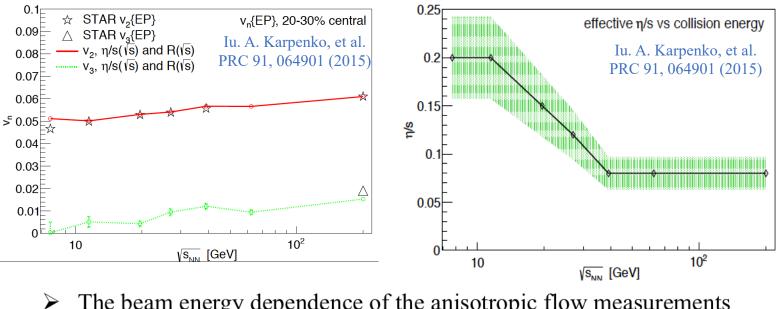
Niseem Magdy Abdelwahab Abdelrahman (For the STAR Collaboration) University of Illinois at Chicago niseemm@gmail.com

Introduction

QCD Phase Diagram



Strong interest in the theoretical calculations which span a broad (T, μ_B) domain.



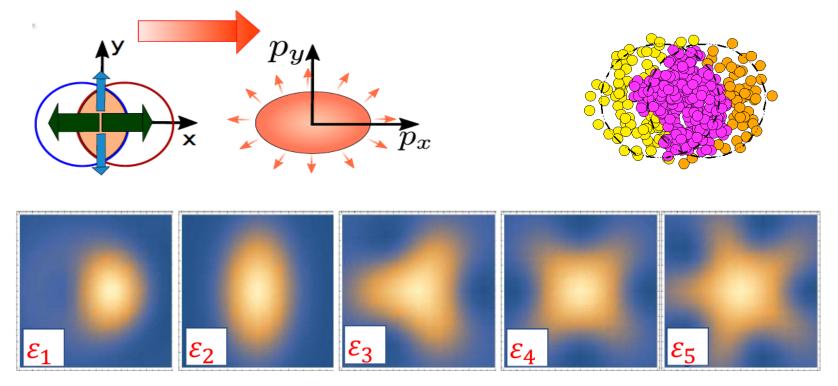
The beam energy dependence of the anisotropic flow measurements can aid the extraction of $\frac{\eta}{s}(T, \mu_B)$

2

Introduction

Anisotropic flow

Asymmetry in initial geometry \rightarrow Final state momentum anisotropy (flow)



 $dN/d\varphi = 1 + 2 \sum_{n}^{\infty} v_n \cos(\varphi - \Psi_n)$

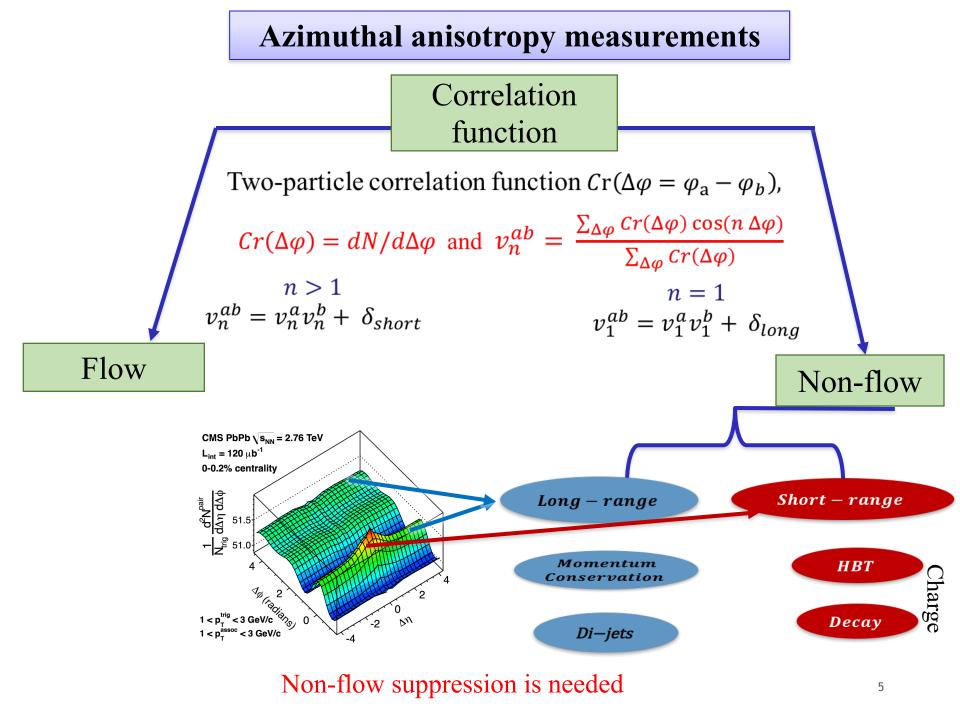
➤ The flow harmonic coefficients v_n are influenced by eccentricities (ε_n), fluctuations, system size, speed of sound c_s(μ_B, T), and transport coefficient $\frac{\eta}{s}(\mu_B, T)$

3

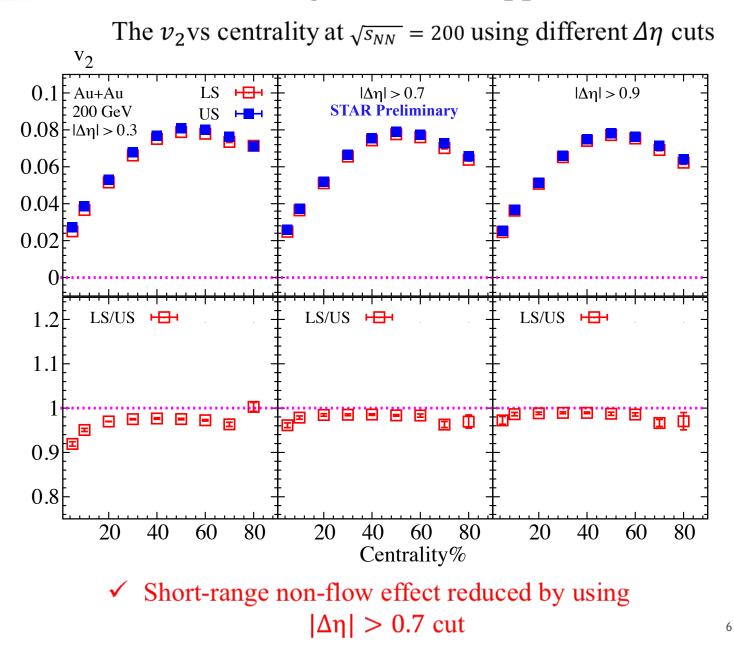
Introduction Azimuthal anisotropic flow

- Comprehensive set of flow measurements are important to study;
 - ✓ Differentiate between initial-state models
 □ Initial-state eccentricity & its fluctuations
 - ✓ Transport coefficients ($^{\eta}/_{s}$, etc)
 - Pin down the temperature dependence of the transport
 coefficients
 - ✓ Detailed flow measurements could aid ongoing efforts to search for the critical end point(CEP)

What are the respective roles of ε_n and its fluctuations, system size and transport coefficient $\frac{\eta}{s}(T, \mu_B)$?



Short-range non-flow suppression



Short — range

Non—flow

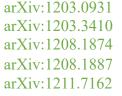
Decay

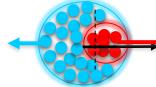
Long – range

Long-range non-flow suppression

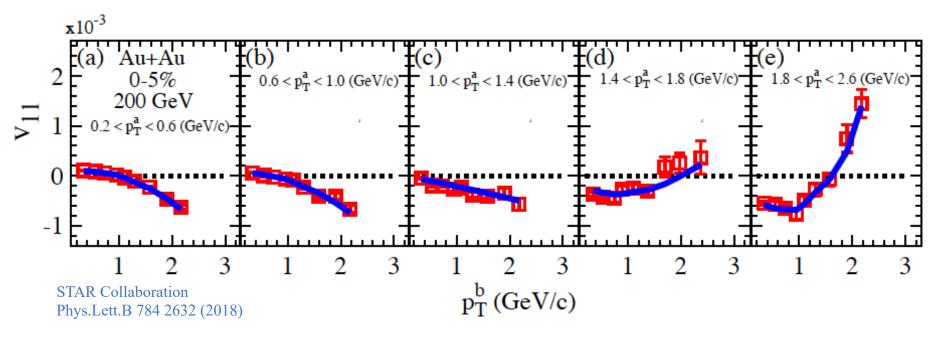
$$v_{11}^{ab} = v_1^{even}(p_T^a) v_1^{even}(p_T^b) + \delta_{long}$$

$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - K p_T^a p_T^b$$





 v_{11} in Eq(1) represents NxM matrix which we fit with N+1 parameters

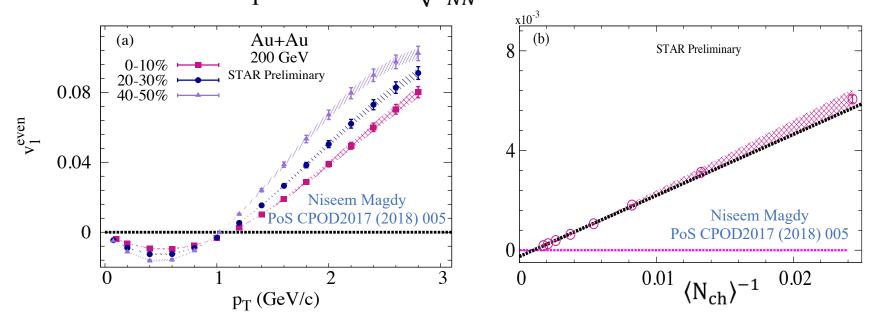


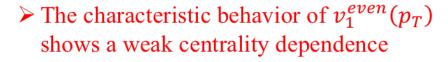
 \succ v₁₁characteristic behavior gives a good constraint for $v_1^{even}(\mathbf{p}_T)$ extraction

Long-range non-flow suppression

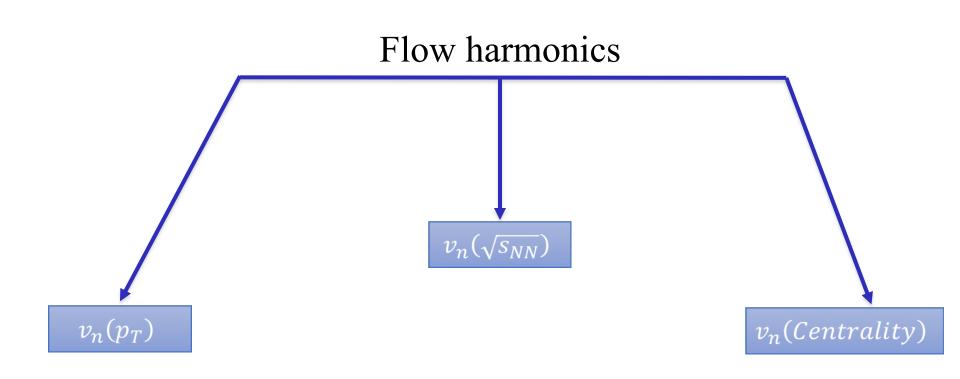
$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - K p_T^a p_T^b$$

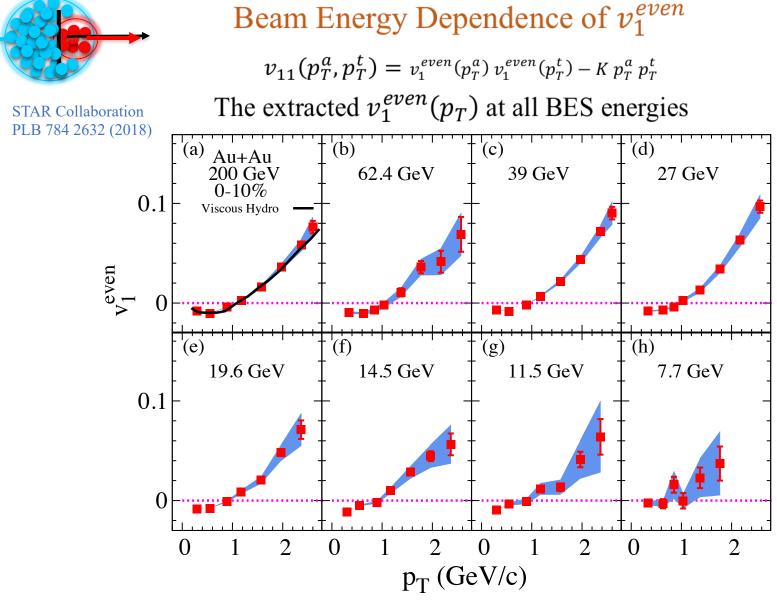
The extracted $v_1^{even}(p_T)$ and the momentum conservation parameter K at $\sqrt{s_{NN}} = 200$



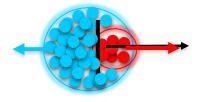


> The momentum conservation parameter K scales as $\langle N_{ch} \rangle^{-1}$





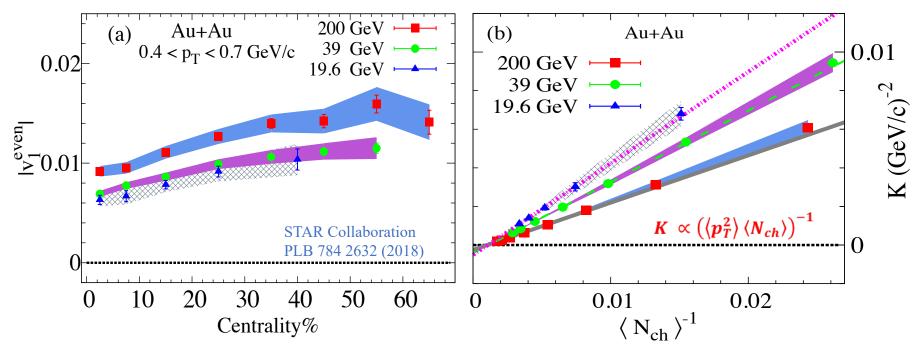
Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies $v_1^{even}(p_T)$ agrees with hydrodynamic calculations at 200 GeV



Beam Energy Dependence of v_1^{even}

 $v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$

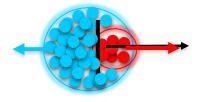
The extracted $v_1^{even}(Cent)$ and the momentum conservation parameter at different beam energies



For different beam energies;

 $\succ v_1^{even}$ increases weakly as collisions become more peripheral

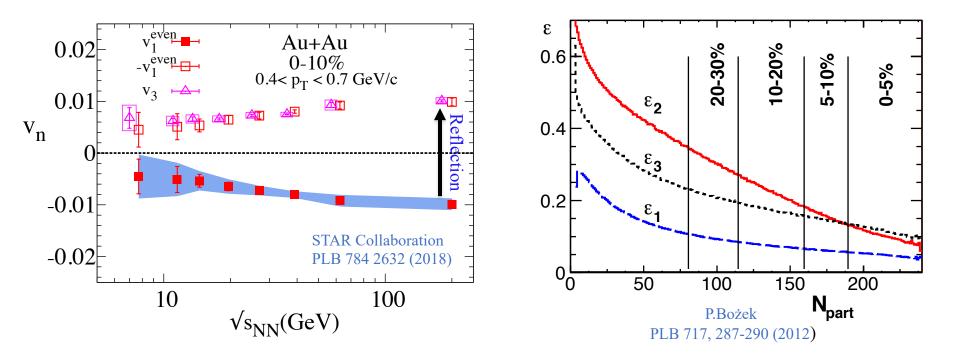
> Momentum conservation parameter K scales as $\langle N_{ch} \rangle^{-1}$



Beam Energy Dependence of v_1^{even}

 $v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$

The extracted v_1^{even} vs. $\sqrt{s_{NN}}$ at 0%-10% centrality



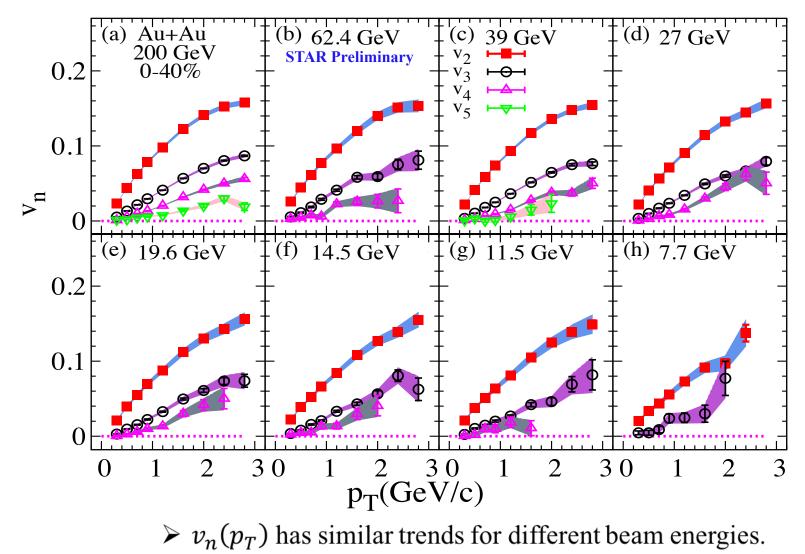
 $\geq |v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7 (GeV/c)$

 $\geq \varepsilon_3 > \varepsilon_1$ $\checkmark v_3 \text{ has larger viscous damping effect than } v_1^{even}$

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

Beam Energy Dependence of v_n

The extracted $v_{n>1}(p_T)$ at all BES energies

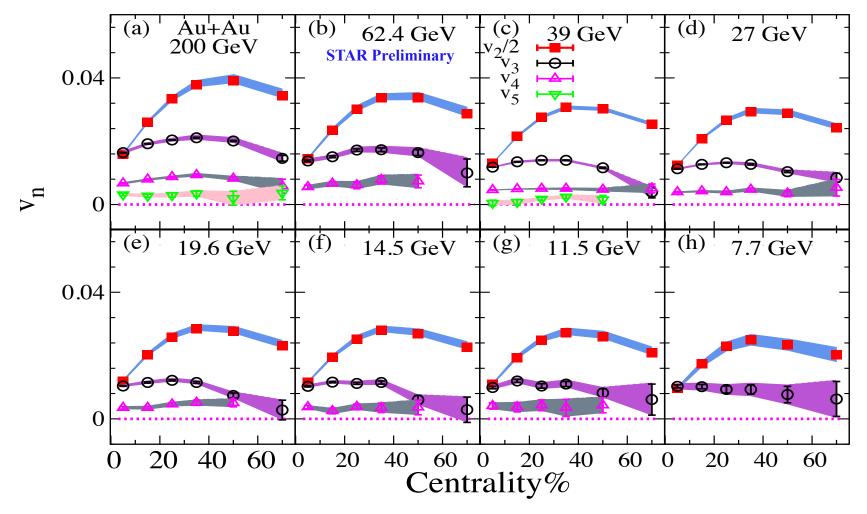


 $\succ v_n(p_T)$ decreases with harmonic order n.

$|\eta| < 1$ and $|\Delta \eta| > 0.7$

Beam Energy Dependence of v_n

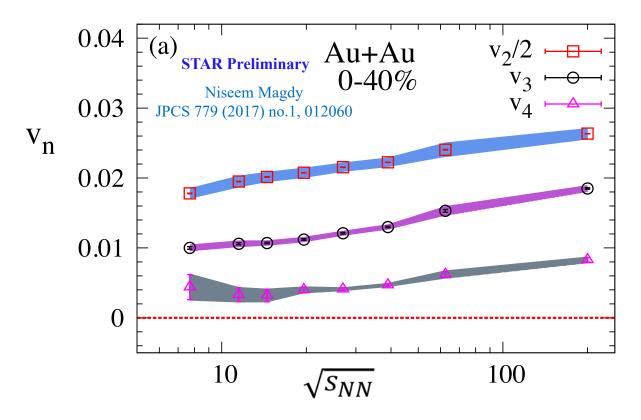
The extracted $v_{n>1}$ (Centrality) at all BES energies



v_n(Centrality) has similar trends for different beam energies.
 v_n(Centrality) decreases with harmonic order n.

Beam Energy Dependence of v_n

The extracted $v_{n>1}$ vs. $\sqrt{s_{NN}}$ at 0-40% centrality



> $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy. > $v_n(\sqrt{s_{NN}})$ decreases with harmonic order n (viscous effects).

Beam Energy Dependence of Flow Fluctuations

$$\langle \langle 2m \rangle \rangle_n = \left\langle \left\langle e^{in \sum_{j=1}^m (\phi_{2j-1} - \phi_{2j})} \right\rangle \right\rangle$$

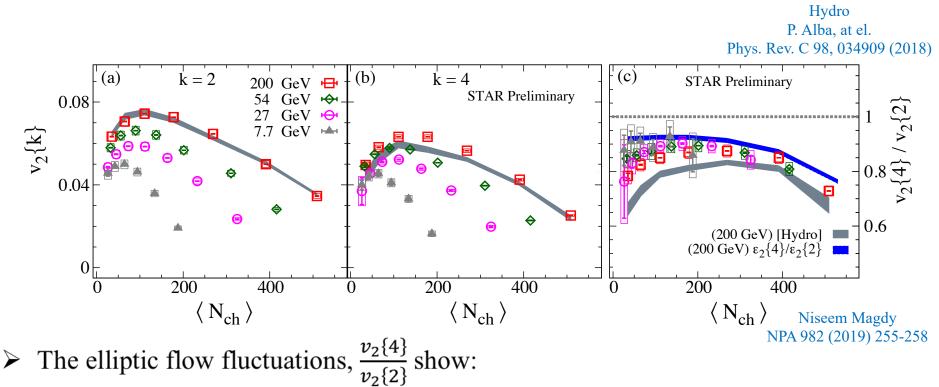
$$c_{n}\{2\} = \langle \langle 2 \rangle \rangle_{n}$$

$$c_{n}\{4\} = \langle \langle 4 \rangle \rangle_{n} - 2 \langle \langle 2 \rangle \rangle_{n} \langle \langle 2 \rangle \rangle_{n}$$

$$v_{n}^{4}\{4\} = -c_{n}\{4\}$$

$$v_{n}^{6}\{6\} = \frac{1}{6}c_{n}\{6\}$$

Beam Energy Dependence of Flow Fluctuations



- ✓ Modest dependence on centrality
- ✓ Weak dependence on beam energy

► The model calculations for $(v_2\{4\}/v_2\{2\})$ and $(\epsilon_2\{4\}/\epsilon_2\{2\})$ bracket the data at 200 GeV

Viscous Attenuation

- \blacktriangleright Acoustic ansatz
 - ✓ Sound attenuation in the viscous matter reduces the magnitude of $v_{n=2,3}$.
- Anisotropic flow attenuation:

5

What are the respective roles of ε_n and its fluctuations, system size $(\langle N_{Ch} \rangle^{-1/3})$ and transport coefficient $\frac{\eta}{s}(T, \mu_B)$?

 $S \sim (RT)^3 \sim \langle N_{Ch} \rangle$ then $RT \sim \langle N_{Ch} \rangle^{1/3}$

 $\ln\left(\frac{v_n}{\varepsilon_n}\right) \propto -\left(\frac{\eta}{s}\right) \langle N_{Ch} \rangle^{-1/3}$

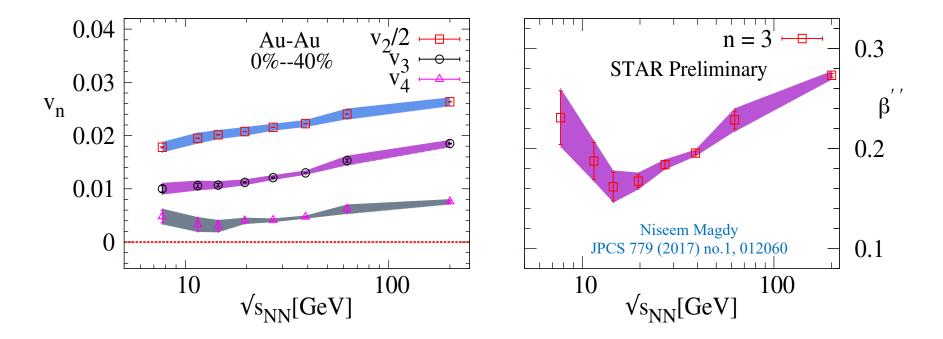
$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \qquad \beta \propto \frac{\eta}{s} \frac{1}{RT}$$

$$v_{\rm n} \propto k \,\varepsilon_n, \qquad k = e^{-\beta \,n^2}$$

 $\frac{n}{2} \propto e^{-\beta \,n^2}, \qquad \beta \propto \frac{\eta}{2} \,\frac{1}{D T}$

Viscous coefficient

$$\beta^{\prime\prime} = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{Ch} \rangle^{\frac{1}{3}} (n-2)^{-1} = A \frac{\eta}{s}$$



The viscous coefficient shows a non-monotonic behavior with beam-energy

Summary

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

 \succ For v_n :

- \checkmark v_n vs centrality indicates a similar trend for different beam energies.
- \checkmark Momentum conservation parameter K scales as $\langle N_{ch} \rangle^{-1}$
- ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.
- > The elliptic flow fluctuations, $\frac{v_2\{4\}}{v_2\{2\}}$ show:
 - ✓ Modest dependence on centrality
 - \checkmark Weak dependence on beam energy

> The viscous coefficient shows a non-monotonic behavior with beam-energy

For different beam energies, these comprehensive measurements provide additional constraints for theoretical models, as well as $\frac{\eta}{s}$ extraction.

