

R&D for the Forward Silicon Tracker at STAR

<u>Te-Chuan Huang</u> (for the STAR collaboration)

National Cheng Kung University DNP Fall 2019 Meeting

The Forward upgrades at STAR

• Extent the STAR capability to $2.5 < \eta < 4$ on the west side

				1	•	
	Year	√s (GeV)	Delivered	Scientific Goals	Observable	Required
			Luminosity			Upgrade
Potential running	2021/22	p†p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	ECal+HCal+Tracking
ntial ning	2021/22	<u>p</u> ; <u>p</u> ; @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/g-jets at $\eta > 1$	ECal+HCal
In parallel with sPHENIX running		p [†] p @ 200	300 pb ⁻¹ 8 weeks	Subprocess driving the large A_N at high x_F and h	A_{N} for charged hadrons and flavor enhanced jets	ECal+HCal+Tracking
		p†Au @ 200	1.8 pb ⁻¹ 8 weeks	initial state and hadronization in nuclear collisions signatures for Saturation	R _{pAu} direct photons and DY Dihadron, g-jet, h-jet, diffraction	ECal+HCal+Tracking
		p†Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF, A-dependence for Saturation		ECal+HCal+Tracking

- Forward Tracking System (FTS):
 - Forward silicon tracker (FST)
 - small-strip Thin Gap Chamber (sTGC)
- Forward Calorimeter System (FCS):
 - Forward preshower
 - Electromagnetic calorimeter (ECal)
 - Hadron calorimeter (HCal)
- Will run in 2021/22 with 500 GeV p+p alone, and in 2023-25 in 200 GeV p+p, p+A and A+A collisions in parallel with sPHENIX
- Lays the groundwork for future EIC physics and hardware

Forward Silicon Tracker (FST)

- 3 disks covered $0 < \varphi < 2\pi$ and $2.5 < \eta < 4$
- 12 modules in each disk
- Each module is split into inner and outer parts
- Main components:
 - Silicon microstrip sensors
 - APV25 frontend readout chips
 - Flexible hybrid
 - Mechanical structure

Silicon sensor and APV25 readout chip

Hamamatsu Sensors

	Inner	Outer	
Radii (cm)	5-16.5	16.5-28	
Angle (°)	30	15	
# of strips $(R \times \varphi)$	4×128	4×64	
Thickness (µm)	320		

128 front-end input pads

Control and output pads

APV readout chip:

- Designed for CMS Silicon strip detector
- Fabricated in 0.25μm CMOS process
- Used in STAR IST, and more than enough probe-tested APV25 chips in-hand for STAR Forward Silicon Tracker

Flexible hybrid, T-Board, and inner signal cable STAR

- Bring power, clock, control signals to APV25 and sensor, and APV output signals to T-Board
- Material:
 - 25 μm thick Kapton + 17.5-35 μm thick Cu layers

T-Board

- Design finished at SDU
- Delivery of production T-Board in 2020/3

Test inner signal cable

- Design finished at BNL
- Delivery of production cables in 2020/6

DAQ system

Will reuse the DAQ system from IST:

- Custom-designed DAQ system in a WIENER MPOD HV-cPCI frame
- 3 crates, 6 ARCII, 36 ARM, 36 Patch-panel boards, 72 outer signal cables from IST can be used for FST.

 Need new T-Board and inner signal cables for FST

Mechanical structure and cooling tube

• Design, simulation, and manufacture at NCKU

	Main structure	Heat sink	Cooling tube
Material	PEEK	Aluminum	Stainless steel
Thickness (mm)	2.27	2.18	1.63
Material budget (X ₀)	0.9% X ₀	2.5% X ₀	9.3% X ₀

First prototype of silicon and hybrid with 3D printed mechanical structure

Air cooling vs. Liquid cooling

Air cooling:

- The worst case scenario: treat the air between the silicon disks as a "solid material" with a thermal conductivity equivalent to the nature convection
- Maximum temperature on the disk is up to ~44 °C
- → Not good enough!

Liquid cooling (the one we will use):

- Temperature inside the tube was set to be 22 °C
- Maximum temperature on the module is ~23 °C

Simulation setups

Generator

Hit simulation

- p+p (PYTHIA6)
 - Minumum bias
 - Primary particles
- Au+Au (HIJING)
 - Minumum bias
 - Primary particles

- GEANT
 - Add Forward tracking system
 - Constant magnetic field
- Hit Fast simulator
 - Reconstruct realistic hit position and error

- Using current STAR tracking algorithm
- New tracker is under development

- Only silicon and mechanical structure implemented.
- Use large silicon disk as sTGC

Tracking performance combined with sTGC

Very preliminary simulation study:

- Good charge distinguishing power and reasonable efficiency and p_T resolution
- Stay tuned for the new tracking algorithm

Summary

- STAR is going to extend it's capability to the forward region
- It lays the groundworks for the future EIC program
- First prototype of the silicon sensor has been tested, mechanical structure is under construction, first prototype for hybrid and T-Board are finished
- Preliminary simulation study has been done
 - Detailed GEANT modeling of FST is in progress
 - A new tracker for forward region and non-uniform magnetic field is under development

Schedule:

- 3 prototype modules will be assembled and tested early next year
- Whole detector is expected to be ready for data taking in Fall 2021

Brief introduction to Silicon Strip Detectors

AC-coupled p-in-n Si strip sensor

- reverse bias of p-n junction to deplete free charges in Silicon
- ionization signal proportional to thickness: ~ 300-500 microns
- noise linearly depends on input capacitance $C_{sub}+C_p$ to FEE preamplifier: typically ~1pF/cm

Ret Ccou Ccou Ccou Ccou Ccou Ccou Ccou Ccou
N. Bacchetta et al., 1995

Rmet	Resistance of the Al strip
Rstr	Resistance of the p+ implant
Rsub	Resistance between p+ implant and backside
Rint	Interstrip resistance with first neighbours
Ccou	Coupling capacitance
Csub	Substrate capacitance
Ср	First neighbour capacitance
Cs	Second neighbour capacitance
Cm	Intermetal capacitance

Tests on the prototype sensors

- We received 4 inner and 6 outer silicon prototype from Hamamatsu.
- Basic tests has been done at UIC

I-V curves from Hamamatsu

Cooling system

Will also reuse the cooling system from IST:

- Heat load $\sim 100W$ (300W for IST)
- Coolant: 3MTM NovecTM 7200 (C₄F₉OC₂H₅)