¹ Measurements of charmonia production in p+p collision ² at $\sqrt{s} = 510$ and 500 GeV at the STAR experiment

3

4

16

17

Te-Chuan Huang^{*} (for the STAR Collaboration) *National Cheng Kung University

Abstract

5	Quarkonium states produced in heavy-ion collisions serve as essential probes in study-
6	ing the Quark-Gluon Plasma. It requires a good understanding of quarkonium production
7	mechanism when interpreting the observed quarkonium suppression in heavy-ion colli-
8	sions. There are several popular models on the market for describing quarkonium produc-
9	tion, such as the Color Singlet Model, the Color Evaporation Model, the nonrelativistic
10	$\rm QCD~(NRQCD)$ formalism including also the Color Octet Mechanism, and the Color Glass
11	Condensate $+$ NRQCD formalism. Precise measurements of quarkonium spectrum from
12	low to high transverse momentum can provide important tests of the models and deepen
13	our understanding of the quarkonium production mechanism in p+p collisions.
14	STAR is one of the running heavy-ion experiments in the world and provides a large
15	acceptance coverage to study quarkonium production at mid-rapidity. In this presentation,

we will present the latest results and progress of measuring production cross sections of J/ψ and $\psi(2S)$ from the STAR experiment in $\sqrt{s} = 510$ and 500 GeV p+p collisions.