Optimizing Time-of-Flight Calculations to Identify Particles in p+p and p+A Collisions with the STAR Detector

Bassam Aboona (For the STAR Collaboration)

Cyclotron Institute at Texas A&M University 04/08/21

Supported in part by:

Office of Science

04/08/21

RHIC: Relativistic Heavy Ion Collider

 The only machine in the world capable of colliding high-energy beams of polarized protons

The beams travel in opposite directions around RHIC's
3.86 km two-lane racetrack

- Provides a tool to research and study the state of matter known as Quark-Gluon Plasma
- Enables us to explore the different properties of protons

STAR: Solenoidal Tracker At RHIC

• STAR collaboration:

- 14 counties
- 68 institutes
- 750 scientists and engineers
- A broad range of research topics
- Particle identification is important for many STAR analyses
- STAR uses the following detectors for particle identification :
 - TPC: Time Projection Chamber
 - BTOF: Barrel Time-of-Flight
 - **VPD:** Vertex Position Detector

Human size compared to STAR

Particle Identification at STAR

- STAR primarily relies on dE/dx information from the TPC for particle identification (PID):
 - This is powerful because it is available for every reconstructed track using the TPC
- In certain momentum ranges, dE/dx bands overlap and its PID power is reduced
- In the following slides, I will show work to optimize a PID tool that is complementary to dE/dx, and particularly where the dE/dx vs. p bands for different particle types are close or cross each other

Time-of-Flight (TOF) System

- The TOF system is used for direct identification of charged particles. The following quantities are needed to calculate the mass of a particle:
 - Flight time: start time and stop time
 - Path length: obtained from the TPC
 - Velocity: obtained from the above two quantities
 - Momentum: obtained from the TPC
- Two important inputs from TOF system:
 - Event start time:
 - Usually measured using the VPD, but we explored an alternative way to determine the start time
 - Event stop time:
 - Measured using barrel time of flight (BTOF), also known as the stop-time detector

Start-less TOF

- Originally developed for studying Au+Au collisions at low energies due to low VPD efficiency
 - It has never been used before to study collisions involving protons
- Start-less TOF uses:
 - BTOF to calculate stop time
 - Well-identified tracks with BTOF hits to calculate the start time
 - Low momentum pions end up providing the highest number of such tracks
 - The start time of a track is inferred based on the mass, momentum, and track length of the track

Default Start-less TOF

- We investigated how the default start-less TOF algorithm works, which led to finding several issues
- The figure on the right illustrates one of the problems in the default start-less TOF algorithm, where the particle selection is allowing other particles to contaminate the pion sample used for start time calculations
- Due to time constraints, in the next slides, I will discuss only a couple of the problems we found

Difference between the start time of one accepted "high-purity" pion and the average start time of the remaining "high-purity" pions

Selecting Pions With High Purity Using dE/dx

0.75

0.7

0.65

0.6

0.55

0.45

e

log₁₀ (dE/dx)

- Default start-less TOF high purity pion selection cuts:
 - 0.2
 - $|N_{\sigma}(pi)| < 2.0$, where N_{σ} is the dE/dx for a given particle in normalized units
- Optimized start-less TOF high purity pion selection cuts:
 - 0.2
 - $|N_{\sigma}(pi)| < 2.0$
 - $N_{\sigma}(e) < -3.0$ and $N_{\sigma}(K) < -3.0$
 - Track cuts to have good quality tracks:
 - nHitsFit > 20
 - nHitsFit/nHitsPoss > 0.51
 - nHitsdEdx > 0.5 * nHitsFit
 - Avoid tracks tangent to BTOF trays:
 - $p_T > 0.18 \text{ GeV/c}$
 - Vertex pointing accuracy to reduce contamination from secondary particles and decays in flight:

2 cm global DCA cut

K -8% I70

K+8% I70

-e-8% 170

-e+8% I70

p-8% 170

p+8% 170

π-8% 170

 $\pi + 8\%$ 170

A Conceptional Problem With The Default Outlier Rejection

- The outlier rejection algorithm prunes through the candidate pions to remove ones with anomalous start time w.r.t. the remaining pions:
 - But the result depends on the order of the candidate pions

Consider the following hit times:

- 4.8 ns, 5.0 ns, 5.2 ns, and 21 ns
- From the above time values, it is expected that 21 ns seconds would be the hit with the outlier time value and the time average to be 5 ns

Example:

Order	t_ave	Tot Prob
x,y,21,4.8	4.8	1/12
5.2,21,y,z	4.9	1/12
21,x,y,z	5	
5.0,21,x,y	5	5/12
х,у,21,5.0	5	
4.8,21,x,y	5.1	1/12
х,у,21,5.2	5.2	1/12
x,y,z,21	21	1/4

Improved BTof Outlier Rejection Algorithm

mass² Distributions Before and After Optimizing Start-less TOF

Conclusions

- I have shown that the new algorithms for start-less TOF lead to significantly improved resolution and a modest increase in efficiency, which will enhance STAR's particle identification capability in p+p and p+A systems
- Colleagues in the STAR Cold QCD group are now using the revised start-less TOF routines in their analyses of p+p data from 2015 and 2017
- Heavy ion colleagues have expressed interest in the improved start-less TOF algorithms for analysis of low-energy Au+Au collision data from 2019, 2020, and 2021
- Efforts are ongoing to incorporate these improvements into the official STAR library

Back up

Energy Loss (dE/dx) Time Correction

- The pion momentum used for start-time calculation is the momentum at the collision point, but:
 - The particle loses energy and slows down as it passes through material
 - This leads to a measured TOF that is longer than the calculated TOF for a pion of momentum p

Based on the geometry of STAR we introduced a simple and effective dE/dx correction to the start time calculation of candidate pions used for the determination of start time for a given event

- This dE/dx correction includes an empirically tuned fudge factor (FF)
- Depends on the configuration of STAR for a given run
- When dE/dx correction is included, we obtain a better BTOF time resolution and a higher number of candidate pions for start time calculations

