

Thermal Photon and Dilepton Results from STAR

Yi Guo^{1,2} for the STAR Collaboration

- Motivation
- STAR detector
- Physics results
 - Dielectron production results.
 - Direct photon results.
- Summary and Outlook

- 1. Brookhaven National Laboratory
- 2. University of Science and Technology of China

Dilepton in RHIC

Dileptons – a bulk penetrating probe:

- Do not suffer strong interaction, penetrating the medium without final state effect.
- Produced in all stages of the system evolution.
- Provide direct information of medium.
- Additional kinematic information (mass vs p_T), sensitive to different dynamics.

Challenges:

- Production rate is low, especially in higher mass region (M_{ee} >1GeV/c²).
- Integrate over time and over many background sources.

Dilepton in RHIC

Interesting topics:

• Low mass region (LMR):

in-medium modifications of vector meson. possible hint of chiral symmetry restoration.

- Intermediate mass region (IMR): QGP thermal radiation.
- semi-leptonic decays of correlated charm : possible charm de-correlation in Au+Au.

• Direct photon:

- → connect to dielectron through internal conversion.
- → high p_T photons (>5GeV/c) : initial hard scattering
- → low p_T photons (1-5GeV/c) : access QGP production

STAR detectors

Key detector used in this analysis:

- ➤ Time Projection Chamber:
 - →|η|<1, 0<Φ<2π
 - Main tracking detector: track, momenta, ionization energy loss (dE/dx)
- ➤ Time Of Flight:
 - →|η|<0.9, 0<Φ<2π
 - →Intrinsic timing resolution ~ 75 ps
 - ➔ Significant improvement for PID
- Barrel Electro-Magnetic Calorimeter:
 →|η|<1, 0<Φ<2π</p>
 - ➡Trigger and measure high-p_T particles

Туре	Year	Central	Min.Bias	EMC trigger (energy threshold 4.3GeV)
Au+Au 200GeV	2010	220M	240M	
	2011		490M	39M
p+p 200GeV	2012		375M	

Electron identification

➢Clean electron PID in p+p and Au+Au collisions with a combination of TPC *dE/dx* and TOF velocity

Collision system	Trigger	Momentum range	Purity
Au+Au 200GeV	Min.Bias	0.2 – 2.0 GeV/c	~95%
	Central	0.2 – 2.0 GeV/c	~93%
	EMC trigger	3.5 – 6.0 GeV/c	~80%
p+p 200GeV	Min.Bias	0.2 – 2.0 GeV/c	~98%

$n\sigma_{_{e}}$ normalized dE/dx

06/09/2015

Background

Background

a. Low mass region

correlated background.

acceptance factor

a. Low mass region
Like Sign – acceptance corrected

$$\checkmark$$
 can reproduce both the combinatorial and \checkmark
 \checkmark can reproduce both the combinatorial and \checkmark
 \checkmark can reproduce both the combinatorial and \checkmark
 \checkmark but lack of statistics and need correct
 \Rightarrow but lack of statistics and need correct
 \Rightarrow ceptance factor
 $B_{LikeSign} = 2\sqrt{N_{++}} \cdot N_{--} \cdot \frac{B_{+-}^{Mix}}{2 \cdot \sqrt{B_{++}^{Mix}} \cdot B_{--}^{Mix}}$
 \land Acceptance factor
 N : same Event , B^{mix} : mixed Event
 \land Mass >0.75GeV/c²

b. Mass>0.75GeV/c²

Mixed Event – normalized to Like Sign in mass region [1,2] GeV/c²

✓ large statistics and no need to correct acceptance.

x but can't reproduce correlated background

Cocktail simulation

Data Points:

PHENIX Collaboration, Phys. Rev. C 81, 034911 (2010) STAR Collaboration, Phys. Rev. Lett. 92, 112301 (2004) STAR Collaboration, Phys. Lett. B 612, 181 (2005).

STAR Collaboration, Phys. Rev. Lett. 97, 152301 (2006) **TBW Fit:**

Z. Tang et al. Phys. Rev. C 79, 051901 (2009).

06/09/2015

The Thermal Photon Puzzle -- Yi Guo

Contributions from decays of hadrons after they freeze out, usually called hadronic cocktails.

pp 200GeV result from year 2012

Cocktail is taken from *[STAR, Phys. Rev. C 86, 024906 (2012)]* with charm cross section changed to 0.797+0.3/-0.36mb *[STAR, Phys. Rev. D. 86, 072013(2012)] Run9 p+p: [STAR, Phys.Rev.C. 86, 24906 (2012)]*

Within uncertainty, the cocktail simulation reproduces the data very well. Greatly improved statistics ~ 7 times more than year 2009.

AuAu 200GeV results

STAR, PRL. 113 (2014) 22301

Enhancement w.r.t cocktail at ρ like region(0.30-0.76 GeV/c²):

1.77±0.11(stat.)±0.24(sys.)±0.41(cocktail) in MinBias.

Data is compared with two models both based on a ρ broadening scenario: 1) Model I by Rapp et al. is an effective many-body model.[*R. Rapp, PoS CPOD2013, 008 (2013)*]

2) Model II is a microscopic transport model – Parton-Hadron String Dynamics (PHSD). [O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)]

Both models show good agreement with data within uncertainty.

Centrality and p_{τ} dependence

The two model calculations show good agreement with data within uncertainty.

Possible charm de-correlation

STAR, PRL. 113 (2014) 22301, arXiv: 1504.01317

Ratio(*Central/MinBias*) shows 2.0 σ deviation from the N_{bin} scaling in 1.8<M_{ee}<2.8GeV/c². Possible charm de-correlation in Au+Au collision or other source from thermal radiation?

Beam Energy Scan at RHIC

NSAC Long Range Plan 2007
Turn-off of the sQGP signature
Search for the phase boundary.
Search for the critical point.

Dielectron production in BES:

LMR: in medium modification of vector meson. Study the chiral property of the medium.

IMR: Searching for the onset of QGP thermal radiation.

Dielectron from RHIC BES-I

Model calculations[†] robustly describe the data from 200GeV to 20 GeV:

– model calculations by Rapp, based on in-media broadening of ρ spectra function, expected to depend on total baryon density.

- almost constant baryon density from 20-200GeV.

*Model: Rapp & Wambach, priv. communication;Adv. Nucl.Phys. 25, 1 (2000) Phys. Rept. 363, 85 (2002)

Acceptance corrected excess spectra

arXiv:1501.05341

Spectra is corrected for STAR detector acceptance.

Normalized to mid-rapdity dN_{ch}/dy .

NA60 Data:

R. Arnaldi et al., PRL. 96, 162302 (2006); R. Arnaldi et al., PRL. 100, 022302 (2008); R. Arnaldi et al., EPJ. C 59, 607 (2009).

Blue line Rapp's model calculation, including a broadened spectral function and QGP thermal radiation

Excess spectra:

The model calculation from R. Rapp is consistent with acceptance corrected excess spectra of AuAu 19.6 GeV.

Low mass excess

Integrated excess yield within mass region $0.4 \sim 0.75 \text{ GeV}/c^2$:

➢ AuAu 19.6 GeV:

→ consistent with In+In 17.3 GeV.

➢ AuAu 200 GeV:

 \rightarrow centrality dependence on the excess yield.

➔higher excess yield in central collision than In+In 17.3 GeVs indicates a longer life time of medium.

Dielectron from internal conversion

• Relation between real photon yield and the associated e+e- pairs:

$$\frac{d^2 N_{ee}}{dM} = \frac{2\alpha}{3\pi} \frac{L(M)}{M} S(M,q) dN_{\gamma} \quad L(M) = \sqrt{1 - \frac{4m_e^2}{M^2}} (1 + \frac{2m_e^2}{M^2}) \quad S(M,q) = \frac{dN_{\gamma^*}}{dN_{\gamma}} S^{-1} @ p_{\tau} >> M, M >> m_e$$

• Two component fit in mass region $0.1 \sim 0.3 \text{ GeV}/c^2$:

$$(1-r)f_c + rf_{dir}$$

- → f_c : cocktail normalized to 0~30 MeV/ c^2
- → f_{dir}: direct virtual photon component normalized to 0~30 MeV/c².
- ➤ r : ratio of the yield of direct virtual photon over the yield of inclusive photon

Low mass dielectron continuum

Fraction of direct virtual photon

STAR, QM2014

Compare to the p+p reference, an excess is observed up to 4GeV/c.

Direct virtual photon invariant yield

- In high p_{τ} region (5~10 GeV/c):
 - consistent with T_{AA} scaled function fit to PHENIX p+p data.
- In low p_{T} region:
 - an excess is observed in p_{τ} range 2~4 GeV/c.

Low p_{τ} excess

[†]from private communication with R. Rapp for Min.Bias.

0-20%: initial temperature ~320MeV at 0.36fm/c, fireball life time ~10fm/c.

[Van Hees, Gale, and Rapp, Phys. Rev. C 84, 054906]

Rapp's model prediction[†]:

- Including QGP, ρ, meson gas, and primordial production contributions.
- $\ensuremath{\,\scriptstyle\rightarrow\,}$ Well describing the low $\ensuremath{p_{\tau}}$ excess in our data within uncertainty.

Summary

Dielectron production :

 \rightarrow A clear excess is observed in LMR from 200 GeV to 19.6 GeV.

- ➔ The excess yields (in mass range 0.4~0,75 GeV/c²) show centrality dependence in 200 GeV Au+Au collisions.
- Within uncertainties, broadening of ρ model calculations can explain the excess in data from 200 GeV down to 19.6 GeV at RHIC.
- →Comparing to In+In 17.3 GeV, higher excess yield in LMR at 200 GeV central Au+Au collisions indicates a longer life time of the medium.

Direct photon production :

→An excess is observed in (p_T range 2~4 GeV/c) when compared to p+p reference and the invariant yield is consistent with model prediction.
 →For p_T range 5~10 GeV/c, the invariant yield follows a T_{AA} scaled p+p results.

Outlook – Measure correlated charms

- Heave Flavor Tracker topologically reconstructs D mesons from hadronic decays and identifies electrons from charm decays.
- Muon Telescope Detector measurement of e-µ correlation clean to correlated charm.

Outlook - RHIC BES-II

BES Phase 2 (2018+):

- Revisit lower energies.
- Improve statistics extend to IMR.
- Systematically study dielectron continuum from √s = 7.7-19.6GeV. LMR enhancement vs.increasing total baryon density.

Estimation for event statistics needed:

Energy	7.7GeV	9.1GeV	11.5GeV	14.6GeV	19.6GeV
MB events	100M	160M	230M	300M	400M

Thank you !!!

Backup

06/09/2015

Photon conversion

arXiv: 1504.01317

Acceptance correction

positive and negative tracks: - TPC sector boundary lost in different phi region, especially in low pT region. loss Like-Sign pair in mass(<0.2 GeV/c²), loss unLike-Sign pair in mass(0.2-0.5 GeV/c²).

Background – photon conversion

We use $\phi_{\rm V}$ angle cut method to remove the photon conversion background as described in:

[PHENIX Collaboration], Phys. Rev. C 81, 034911 (2010).

