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Abstract

Ultra-relativistic heavy ion collisions are believed to produce a state of deconfined

quark-gluon plasma that is similar to the universe just after the Big Bang. To in-

vestigate the properties of this matter, a Beam Energy Scan was performed at the

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab. Information

about the phase diagram describing the matter produced in these collisions can be

gained by studying the beam energy dependence of various observables. One such

analysis is Hanbury Brown Twiss (HBT) interferometry which is used to measure the

size and shape of the regions emitting particles which are in turn related to dynamical

processes that drive the evolution of the collisions.

In this thesis analyses using two-pion HBT interferometry are presented for Au+Au

collisions at
√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR

detector during the Beam Energy Scan program. The dependence of extracted corre-

lation lengths (radii) are studied as a function of beam energy, azimuthal angle relative

to the reaction plane, centrality and transverse mass, 〈mT 〉. The eccentricity of the

entire fireball at kinetic freeze-out can be extracted from the azimuthally-differential

analysis. This freeze-out shape is believed to be sensitive to changes in the equation

of state when measured as a function of beam energy. A new global fit method is

studied as an alternate method to directly measure the parameters in the azimuthal

analysis. The freeze-out eccentricity is observed to decrease monotonically with beam
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energy which is qualitatively consistent with the trends from all model predictions

and quantitatively most consistent with a hadronic transport model.
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Chapter 1: Introduction

The universe immediately after the Big Bang was composed of matter under ex-

traordinary conditions of extreme temperatures and pressures. About a microsecond

after the Big Bang all matter was in a state of deconfined quarks and gluons. As

the universe expanded and cooled, the quarks and gluons coalesced into neutrons and

protons. Many of the neutrons and protons became bound into the nuclei that form

the ordinary matter we observe all around us. Today, the initial quarks and gluons re-

main tightly bound, deep within ordinary matter. To study the material in the early

universe requires compressing material to sufficiently high energy density to break

the material back into quarks and gluons. This may be possible by colliding heavy

nuclei at high energy. Compressing together many protons and neutrons may create

a small, short-lived pocket of deconfined quarks and gluons. Of course, historically

speaking all this is a rather recent discovery.

It was only in the late 1800s that scientists determined that matter was composed

of atoms. In the early 1900s it was found that the these atoms each contained a

small, dense nucleus composed of smaller, tightly bound neutrons and protons. The

nuclei were surrounded by diffuse clouds of relatively loosely bound electrons. In the
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latter half of the 1900s it was found that these neutrons and protons were themselves

composed of smaller particles, quarks and gluons, that interacted according to a new

force, the strong nuclear force.

In particle collisions, either in accelerators or cosmic ray studies, new particles were

identified and their properties studied. Particle collisions were produced at higher and

higher energies as technology allowed more powerful colliders to be designed. As the

energy of the collisions were increased smaller and smaller length scales were probed.

Instead of probing the structure of atoms at keV energies, MeV colliders probed the

structure of the nucleus. New, heavier unstable particles were discovered as more

energy is required to produce more massive particles. At GeV energies the structure

of the matter at scales smaller than the size of the protons and neutrons could be

investigated. It was at these high energies that quarks were discovered and the theory

of quantum chromodynamics (QCD) was created to explain the observed properties

of the quarks.

Several decades ago Cabibbo and Parisi [1], Shuryak [2] and others suggested col-

lisions of heavy nuclei may compress the nuclear matter so it exceeds normal nuclear

density (0.17 GeV fm−3) possibly to the extent that individual nucleons overlap and

the quarks are no longer bound inside individual nucleons. They are free to interact

en mass, forming a bulk state of deconfined quarks and gluons. This is a concept re-

ferred to as asymptotic freedom, as there is a transition from bound quarks to freely

interacting quarks. If the transition was experimentally observable it would provide

an opportunity to verify and refine the QCD theory. This simple argument provided

motivation to develop the field of high energy nuclear physics and build machines to

collide nuclei over wide ranges of both nuclear size and collision energy.
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In previous experiments at the Bevalac at Lawrance Berkeley National Lab (LBNL),

the Alternating Gradient Synchrotron (AGS) at Brookhaven National Lab (BNL),

and the Super Proton Synchrotron (SPS) at the European Center for Nuclear Re-

search (CERN) techniques for studying nuclear collisions were developed. The nuclear

collisions studied were at center of mass energies,
√
sNN , up to 17.3 A·GeV. With the

creation of the Relativistic Heavy Ion Collider (RHIC) at BNL, Au+Au collisions at

energies as high as 200 GeV may be studied and the accelerator is designed to per-

form at lower energies (≈5-200 GeV) and for different collision systems (p+p, d+Au,

Cu+Cu, U+U, etc.). The Large Hadron Collider (LHC) at CERN now allows Pb+Pb

collisions as high as 7 TeV.

The results from RHIC experiments (STAR, PHENIX, PHOBOS, and BRAHMS)

indicate that the material produced in collisions at its highest energies studied (62.4,

130, 200 GeV) is a state of deconfined quarks and gluons predicted by QCD [3–6]. At

some energy (or energies) there must be a transition from normal nuclear matter to

this deconfined state that should leave some signature in the various observables that

can be measured. Due to the flexibility of the RHIC accelerator, a Beam Energy Scan

was proposed to map out the nature of the phase diagram for nuclear matter [7]. The

goal is to look at many observables simultanously across a range of lower energies and

see if there are changes that might provide an understanding of the phase transition

that appears to occur at higher energy. Abrupt changes or non-monotonic behavior

might indicate a change in the type of phase transition; the slope of the equation

of state might develop a flat region indicative of a mixed phase at certain energies.

Other observed behavior attributed to a deconfined state at higher energies may no

longer be observed below some energy or may become less and less prominent.
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This thesis explores one of the main observables - the shape of the collisions

during the short period of time when all the interactions cease and the produced

particles freeze-out and free stream to the detectors. This period is referred to as

kinetic freeze-out. The shape is expressed as a freeze-out eccentricity obtained in an

azimuthally-differential Hanbury Brown Twiss (HBT) analysis and plotted as a func-

tion of beam energy. As described later, if non-monotonic behavior were observed it

might indicate a different equation of state at some energy that could suggest the type

of phase transition has changed [8]. Standard azimuthally-integrated HBT analysis

also is performed as it provides information related to the source sizes emitting pions,

evolution of the system volume and system lifetime, and information about the tem-

perature of the system at different collision energies. Chapter 2 provides an overview

of some relevant information about the fundamental particles in the standard model,

the evolution of the collisions and physical processes that drive the evolution. In

Chapter 3 the expected QCD phase diagram is reviewed and the broad Beam Energy

Scan program is described. The current analysis is placed within the context of this

larger effort. Chapter 4 then gives a description of the RHIC complex and the STAR

detector focusing on subsystems relavent to this analysis. The concepts underlying

the Hanbury Brown - Twiss (HBT) Interferometry are presented in Chapter 5 while

Chapter 6 elaborates on how the HBT radii and freeze-out eccentricity can be exper-

imentally extracted. In Chapter 7 details of the data sets and event, track and pair

selections used in the analysis are outlined. The results are presented in Chapter 8

along with discussion. Finally, in Chapter 9, conclusions are drawn about what has

been learned.
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Chapter 2: The structure of matter and nuclear collision

evolution

The study of ultra-relativistic nuclear collisions allows investigation of the fun-

damental structure of matter and the processes that occur when the exotic matter

produced in the collisions evolves back into ordinary, stable matter. This chapter pro-

vides a review of the structure of matter, the evolution of nuclear collisions, and some

of the processes that occur in the collisions that are especially relavent to the current

work. The last section gives a general discussion of the thermodynamic description

of nuclear material.

2.1 The structure of matter

As was mentioned earlier, over the last 150 years or so, it was gradually discovered

that all matter was composed of a finite set of atoms which themselves are composed

of even smaller particles. Atoms contain a nucleus of tightly bound neutrons and

protons surrounded by a diffuse cloud of electrons. The electrically charged particles

experience electromagnetic interactions mediated by massless, chargeless photons.

The neutrons and protons are composed of smaller quarks which interact with each

other through the strong force in addition to the electromagnetic force. Figure 2.1

arranges the fundamental particles from which all other composite particles are made
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along with some of their basic properties. While electrically charged particles may

have either of two charges, positive or negative, there are three color charges that gov-

ern strong force interactions. This makes the theory describing the strong force much

more complex than electromagnetic theory. The particle that mediates the strong

interaction is the massless gluon. The photon in the electromagnetic interaction does

not possess electric charge and therefore does not interact electromagnetically with

other photons. In contrast to this, the gluon does contain color charge and so inter-

acts, not only with the quarks, but with other gluons through the strong force. This

further complicates the theory describing strong interactions making calculations with

the theory extremely difficult.

There are a few other fundamental particles. In addition to the electron there is

another type of lepton, the nearly massless neutrino which interacts only through the

weak force which is mediated by massive W+, W−, and Z bosons. The weak force is

responsible for the radioactive decay of unstable nuclei. There are three generations

of particles with many similar properties but different masses. Also, for each of the

quarks and leptons in Figure 2.1 there is a corresponding anti-particle.

Hadrons are composite states built from various combinations of quarks and anti-

quarks. Hadrons come in two types. Mesons are composed of two constituent parti-

cles, a quark-anti-quark pair, while baryons are composed of three constituent par-

ticles, also some combination of quarks and anti-quarks. Discovery of heavier and

heavier hadrons came historically as higher and higher energy accelarators were built.

It takes more energetic collisions to create heavier particles but even so the lightest

particles are produced in larger numbers (higher multiplicities) as the collision en-

ergy is increased. In relativistic heavy ion collisions, most of the observed particles,
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Figure 2.1: Chart summarizing the fundamental particles [9]. The first three columns
show the three generations of quarks and leptons. The Higgs boson is a new addition
to the chart as it was only recently discovered.
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about 90%, are pions, the lightest meson. Charged pions are the particles used in

this analysis. Of course, the only stable composite particle is the lightest baryon, the

proton. Heavier baryons are unstable and decay to lighter particles. Neutrons are

stable over a long period of time in various stable nuclei due to being bound inside

the potential well of the nuclei. However, even neutrons are unstable when free or

when in radioactive nuclei. All mesons are unstable as well.

In particle collisions the interactions may occur between fundamental particles,

quarks and gluons for instance, but the observed particles are the mesons and baryons,

as well as leptons and photons, that are formed and which stream out into the detec-

tors. The observed particles, and their relative numbers and patterns of momentum

and spatial distribution, are used to infer information about the fundamental inter-

actions and properties of the medium produced in the collisions.

The material that is most difficult to study is that composed of unbound quarks

and gluons because they have been so tightly bound inside nucleons since a micro-

second after the big bang. To study interactions of quarks and gluons and experimen-

tally explore Quantum Chromo-Dynamics (QCD), the theory describing strong force

interactions, requires colliding particles at extremely high, ultrarelativistic energies in

particle accelerators. While proton+proton collisions can be used to study simple in-

teractions between the quarks and gluons, nucleus+nucleus collisions smear together

many protons and neutrons at the same time. At sufficiently high energy densities

the nucleons should overlap. Instead of a gas of interacting hadrons (particles with

quarks still bound inside) the interactions are between quarks which form a bulk liq-

uid medium. In the high energy density many additional quarks and anti-quarks are

formed by pair production. This medium of deconfined quarks and gluons is often
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referred to as the strongly coupled Quark Gluon Plasma (sQGP). The material is hot

and dense. It evolves, expanding, cooling, and eventually freezing out into composite

particles which may be measured in the detectors. Certain aspects of how the col-

lisions evolve are intimately related to the research in this thesis so we will review

these basic, relavent, aspects of the evolution of the collisions in further detail.

2.2 Evolution of a heavy ion collision

When two heavy nuclei collide the system is believed to evolve through several

states that may be depicted using a space-time diagram shown in Figure 2.2. The

two nuclei approach each other along the lines defining the lower cone and collide at

the vertex. After the collision, the pieces of nuclei, spectators, that do not participate

in the collision (for instance in non-central collisions), continue down the beam pipe

(near the lines defining the upper cone in the diagram). These so called fragmentation

regions are at very forward and backward “beam” rapidities, ybeam where rapidity is

defined as

y =
1

2
ln

(
E + pz
E − pz

)
. (2.1)

The maximum momentum in the longitudinal direction, pz, that a particle can have is

determined by the beam energy. At higher energy, therefore, the beam rapidity, ybeam

increases. A second beam in the opposite direction has negative beam rapidity and

so as the energy of two colliding beams increases, the rapidity window, ∆y, increases

and the regions near beam rapidity become more separated from the mid-rapidity

region.

At sufficiently high collision energies it is believed that a bulk medium is formed.

It cools and emits particles primarily into the mid-rapidity region (the central part
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Figure 2.2: Space-time diagram demonstrating the evolution of a heavy ion collision.
Figure is from Reference [10].

of the upper space-time cone). The medium that is produced evolves through several

stages also shown in the diagram. Just after the collision, the system takes some

time to reach thermodynamic equilibrium. This process is believed to take ≈1 fm/c.

During a subsequent period, lasting very roughly ≈10 fm/c, the system undergoes

hydrodynamic expansion as a result of pressure gradients in the compressed fluid. As

the system expands, it cools. If the medium is deconfined then at some temperature

the partons will form back into hadrons. If the phase transition is first order then

the system passes through a mixed phase. Once the system is composed of re-formed

hadrons, the particles may still undergo interactions that change ratios of the particle

species. At a sufficiently low temperature, Tch, chemical freeze out occurs and the

particle yields are frozen. Still, final-state interactions between the hadrons (Coulomb

interactions for instance) may change the particles’ momentum distributions. At some

temperature, when the system has expanded and cooled enough, to a temperature,

10



Tkin ≈ 120 MeV/c, kinetic freeze out occurs. The freeze-out process takes ≈2-3 fm/c.

The particles free stream away from the collision vertex, out into the detectors. These

are the main stages in the evolution believed to occur at sufficiently high collision

energies achieved at RHIC and the LHC. The picture may change as the collision

energy is lowered. Observing such changes can be explored in a Beam Energy Scan

which has been carried out recently at RHIC. This program is reviewed in detail in

Chapter 3.

2.3 Relavent nuclear processes

Even though the particles measured and used in this analysis, low momentum

pions, reflect the state of the system at freeze-out, the state of the system during

this late stage depends upon the entire prior evolution of the system and the type of

material of which it was composed as it evolved. Because the material is compressed

to such a hot, dense state, pressure gradients are created which drive the system to

expand in both the transverse and longitudinal directions. These are decoupled at

high energies, so the discussion in this section should apply to collisions obtained at

the AGS, SPS, RHIC, and the LHC [11]. In the transverse plane, central collisions will

experience radial flow, expansion in the outward direction. In collisions at non-zero

impact parameter, however, the initial shape of the collision region is approximately

an ellipse. Although initial state fluctuations in positions of participant nucleons may

cause deviation from this shape [12], the primary second order anisotropy remains

approximately elliptical. In this case, the initial spatial anisotropy causes stronger

pressure gradients to develop along the short axis of the ellipse (the reaction plane
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containing the impact parameter and beam direction) which in turn causes preferen-

tial expansion in the reaction plane compared to the out-of-plane direction. The shape

of the region becomes more round as the system expands and cools. In non-central

collisions, the variation of pressure gradients boosts the momentum of the particles

preferentially in the reaction plane direction. Therefore, more particles are emitted

in the reaction plane causing an azimuthal anisotropy, in momentum space, that is

a function of transverse momentum, pT . This anisotropy is generally represented by

the Fourier decomposition

E
d3N

d3p
=

1

2πpT

d3N

dpTdy
(1 +

∑
2vn(pT ) cos[n(φ−Ψr)]) (2.2)

in which the Fourier coefficients, vn, reflect the amplitude of the variation relative to

the nth order event plane. An event plane is an estimate, with imperfect resolution, of

the true reaction plane determined either by the azimuthal distribution of observed

particles or by the spectator particles that proceed near the beam pipe at large

rapidity. The details of the event plane calculations are left for Chapter 6. If the

direction of the impact parameter can be reliably estimated, v1 can be measured

which reflects the strength of the so called directed flow. If only the reaction plane is

estimated (with the direction unspecified) this allows determination of the 2nd order

coefficient, v2, which corresponds to elliptic flow. These first two coefficients are

most related to the hydrodynamic description of the collision evolution because it

is the initial first and second order anisotropy of the collision geometry that should

generate related first and second order anisotropy of the pressure gradients. Higher

order coefficients like v3 (triangular flow) can also be extracted. The higher order

coefficients likely arise due to initial state fluctuations of the particpant nucleons

that cause deviations from precise initial elliptical geometry [12]. The beam energy
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Figure 2.3: The elliptic flow coefficient, v2, integrated over low pT shows a monotonic
increase with beam energy [13].

dependence of the momentum space anisotropy, v2, integrated over pT is shown in

Figure 2.3. It appears to increase smoothly at higher energies although a plateau

may possibly develop in the 10-100 GeV region.

While the pressure gradients should drive the system toward a more round shape,

a couple of other factors are important to consider. First, if the lifetime of the system

increases at higher energies then, even if the pressure gradients were the same at all

energies, the system would experience the pressure gradients for a longer time before

freeze-out. The longer the preferential in-plane expansion occurs the more round

the shape becomes. A stronger difference between in-plane and out-of-plane pressure

gradients, a longer lifetime, or both, should result in a monotonic decrease in the
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Figure 2.4: Equations of state for a hadronic gas (EOS-H), an ideal gas of massless
quarks (EOS-I), and for a system with a first order phase transition between the two
(EOS-Q) [14].

shape as a function of beam energy. Second, the time spent in different phases of

matter could affect the beam energy dependence of the freeze-out shape.

Phase transitions may leave an imprint on the freeze-out shape. Three different

equations of state are shown in Figure 2.4. One is for a hadron gas, EOS-H, an-

other for an ideal gas of massless quarks, EOS-I, and a third which incorporates a

phase transition between the two, EOS-Q. The pressure gradients are stronger in the

deconfined case the c2
s = dp/dε = 1/3 compared to the hadronic case c2

s = 1/6 [14].

Figure 2.5 shows two two-dimensional hydrodynamical model predictions showing

the time evolution of the participant zone shape when two different equations of state
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Figure 2.5: Two-dimensional hydrodynamical evolution of the freeze-out shape for
two different equations of state [14].
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are specified. In one case the matter experiences a first-order phase transition from

a deconfined ideal gas of quarks and gluons back to a hadron gas state. When the

phase transition is included the model predicts a more out-of-plane extended, ellipti-

cal shape [14]. This may be due to the time spent in the mixed phase during which

the pressure gradients vanish (the flat segment in Figure 2.4). During this mixed

phase the change in shape would not be accelerating.

Clearly there is a direct connection between the initial pressure gradients and the

final shape. The size of the momentum space azimuthal anisotropy, v2, is determined

by the difference in pressure gradients in-plane and out-of-plane and system lifetime.

The relative strength of these pressure gradients determines how much the system

changes from an out-of-plane extended ellipse to a more round shape at freeze-out.

The final elliptical shape of the collision can be quantified by its freeze-out eccentricity,

εF . The method of extracting this from the data and the mathematical definition are

described in Chapter 6 but qualitatively εF is positive for an out-of-plane extended

elliptical shape, zero for a round shape, and negative if the shape evolves to an in-

plane extended ellipse. If the nature of the phase transition changes from a rapid

crossover to first order transition, which requires passage through a mixed phase,

εF may exhibit non-monotonic dependence on collision energy. Prior to the Beam

Energy Scan at RHIC a few prior measurements of εF were performed by E895 at

2.7, 3.32, and 3.84 GeV [15], CERES at 17.3 GeV [16], and STAR at 200 GeV [17].

These are summarized in Figure 2.6.

There is a suggestion of non-monotonic behavior with a minimum near 17.3 GeV.

However, these measurements were carried out using different detectors with differ-

ent acceptance regions and variations in the analysis details. While a minimum is
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Figure 2.6: Existing measurments of the freeze-out eccentricity, εF , [15–17] and model
estimates [8, 14] prior to the Beam Energy Scan program.

suggested, the statistics and number of measurements were too few to rule out that

this could simply be due to random fluctuations. However, to explain this possible

non-monotonic behavior two scenarios were speculated to be possible in [8] which are

discussed here. In the first scenario the material begins to enter a mixed phase near

17.3 GeV. As the energy is increased it simply increases the concentration of decon-

fined material in the mixed phase without increasing the temperature, indicative of

a latent heat during the phase transition, and the time spent in the mixed phase

may increase. During that time the lack of pressure gradients mean the expansion

is not accelarating and the eccentricity plateaus with
√
sNN . At some higher energy,

perhaps around 200 GeV, the material is completely deconfined and the pressure gra-

dients reappear. Beyond that point the eccentricity would again drop with collision
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energy. In the second scenario the behavior is instead related to changes in the life-

time of the system. Somewhere around 17.3 GeV deconfinement begins resulting in

an increase in the lifetime of system as it coasts through the mixed phase. A more

round shape is obtained. As the collision energy is increased, however, the lifetime

of the system decreases and shape evolves less toward a round shape. This may be

consistent with a faster evolution in which the passage through the mixed phase is

shorter due to more rapid expansion prior to the mixed phase.

The available model predictions prior to the Beam Energy Scan are also interest-

ing. The hydrodynamic models with equations of state shown in Figure 2.4 tend over

predict the available data. Also, no models predict a rise in the eccentricity with col-

lision energy. However, the magnitude of the freeze-out eccentricity predicted using

different equations of state are clearly different. Measuring the freeze-out eccentricity

can place new constraints on the models. The models shown in Figure 2.4 and more

recent models will be discussed in more detail in Chapter 9.

In any case, extracting the beam energy dependence of the freeze-out eccentricity

is the main subject of this thesis. Performing the analysis with the same detector,

analysis techniques, and acceptance cuts will allow unambiguous determination of

the freeze-out shape and determine whether or not there is really any non-monotonic

behavior. Details of the techniques used to extract the freeze-out shape of the system

are described later in Chapters 5 and 6. This study is part of a larger Beam Energy

Scan program designed to map out features of the QCD phase diagram. The next

chapter provides an overview of this Beam Energy Scan program, placing the current

research within this larger context.
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2.4 Thermodynamic description of nuclear matter

The previous section outlined a scenario in which the material produced in the

collision of two heavy nuclei undergoes hydrodynamic evolution. In such a scenario

the system may be described by thermodynamic quantities such as temperature, T,

pressure, P, energy density, ε, particle number density, η, entropy density, s, and

chemical potentials, µ of different types. This section is not intended as a compre-

hensive review of thermodynamics but simply as a brief overview to promote some

discussion of important concepts that will be mentioned later, especially regarding

the phase diagram in the next chapter.

The matter produced in a heavy ion collision may exist in different states at

different times during its evolution depending on the collision energy. Since particles

may flow out of the system, thermodynamically the system should be described by a

Grand Canonical Partition Function. In this case, a chemical potential, µ, determines

what types of particles may be emitted. Conserved quantities play an important role.

As an example, baryon number is conserved in the collision. The incoming nuclei

already have a net baryon number. The material produced at mid-rapidity may

contain a large fraction of particles from pair production of quarks and anti-quarks as

well which contribute no additional net baryon number. At lower collision energies the

net baryon density at mid-rapidity increases, as does the baryon chemical potential,

µB. A larger value of µB ensures that more net baryons will be produced in collision

and also ensures that the net baryon number is conserved during any phase transitions

that may occur in the collisions.

The form of the partition function depends on the state of matter formed in the

collisions and which assumptions or approximations may be imposed for simplicity
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(can particles be treated as massless, for example). If a quark-gluon plasma is formed

the partition function will include contributions from gluons (bosons) and quarks

(fermions) with some number of quarks specified (often u, d, and s are included). If

the system is a hadron gas instead, the partition function must account for mesons

(bosons) and baryons (fermions). An example Grand Canonical Partition function,

Eq. 4.124 in Reference [18], is

lnZ(T, µ, V ) =
gV

2π2T

∫ ∞
0

dkk4

3E

[
1

e(E−µ)/T ∓ 1
+

1

e(E+µ)/T ∓ 1

]
(2.3)

where k is the particle momentum, E =
√
m2 + k2 is the particle energy, and g is the

degeneracy factor for the particle. In this equation the positive sign is for fermions

and the negative sign is for bosons. Also, the term with (E−µ) accounts for particles

while the term with (E + µ) accounts for antiparticles because they will have equal

and opposite chemical potentials. Several terms of this form may be added to account

for more complex systems with multiple types of particles and anti-particles.

The partition function is determined once the relavent Bose-Einstein or Fermi-

Dirac distributions are included for all the particles and anti-particles in the system,

any simplifying approximations are applied, and the degeneracies of the particles are

computed. Ref. [18] provides a thorough derivation for several different scenarios as

examples.

Once the partition function is constructed, the free energy is simply

F = −T lnZ. (2.4)

Free energy is the available energy that may be taken out of the system to do some

useful work on the surrounding environment. The free energy allows calculation of
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thermodynamic quantities using standard relationships

η =
T

V

d lnZ

dµ
, (2.5)

ε =
T 2

V

d lnZ

dT
+ µη, (2.6)

P = −
(
dF

dV

)
T

= −
(
d(−T lnZ)

dV

)
T

, (2.7)

and

s =
1

V

dT lnZ

dT
. (2.8)

A phase transition requires that certain criteria be met in order to occur. The

pressure, temperature and chemical potential must remain equal in the transition [18].

As mentioned earlier, the baryon chemical potential is conserved during the collision,

regardless of whether the material is in a deconfined quark-gluon plasma state or a

hadron gas state. When the phase transition occurs the criteria above are met and

are constrained by any conservation laws. The next chapter outlines the T−µB phase

diagram that describes nuclear matter and how it can be explored by looking at a

variety of observables at different energies.
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Chapter 3: The Beam Energy Scan

The first phase of a Beam Energy Scan (BES) recently performed at RHIC was de-

signed to map out expected features of the QCD phase diagram depicted in Figure 3.2.

This is accomplished by varying the energy of the collisions. In Au+Au collisions, the

incoming nuclei have a net baryon number, B=394, which is conserved in the collision.

As the collision energy is lowered, the rapidity window narrows as demonstrated in

Figure 3.1. Specifically, as the beam energy is reduced from
√
sNN = 200 GeV down

to 7.7 GeV the rapidity window (∆y = 2ybeam) decreases from 10.8 units of rapidity

down to 4.18 units of rapidity. The rapidity density of net baryon number, dNB/dy,

must increase as the beam energy is reduced. More initial baryon number in the mid-

rapidity region, where measurements are made (y ≈< 1 for STAR), means a larger

number of net baryons will be produced in the final state. Such a higher potential

for baryon formation is associated with a larger baryon chemical potential, µB. Mea-

suring collisions at lower and lower energy during a Beam Energy Scan is equivalent

to measuring material produced at larger and larger baryon chemical potential.

The next few sections describe the landscape of the QCD phase diagram, the

questions the Beam Energy Scan is designed to address, and some observables that

can be used to probe those questions. The current work is then placed in the context

of this bigger picture.
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Figure 3.1: The pseudo-rapidity distribution for charged particles, dNch/dη (≈
dNch/dy) narrows as the beam energy is reduced. Rapidity, y, and pseudo-rapidity,
η, are nearly equal for the relativistic particles measured at RHIC. These results,
from the PHOBOS collaboration, show the distributions for measured charged parti-
cles (including charged baryons) but the shape should hold for neutral baryons and
mesons as well. This figure is taken from [19].
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3.1 The QCD phase diagram

Figure 3.2 shows the main features that are expected to describe the various states

of hot QCD matter. At low temperatures, T, and baryon chemical potential, µb, the

material consists of a hadronic gas. The quarks are bound inside individual nucleons

in the case of ordinary nuclei or baryons and mesons in more exotic situations (for

instance the later stages of a heavy ion collision). At large enough baryon chemical

potential a transition is expected to some other state of matter, perhaps a deconfined

color super-conductor [20]. This type of material is hypothesized to exist in astro-

physical contexts such as neutron star cores [20, 21] although recent observations of

the highest mass neutron stars tend to disfavor such a scenario [22]. At high temper-

ature a phase transtion is also expected from a hadronic gas to a strongly interacting

fluid of quarks and gluons. This high temperature, low chemical potential region is

expected to be most similar to the material in the early universe. This material with

high T, low µb is the region produced and studied in heavy ion collisions.

Soon after a collision occurs some high temperature QGP material is created which

evolves. The matter expands and cools along a trajectory through the phase diagram.

Such paths are depicted on the phase diagram for different collision energies measured

in the Beam Energy Scan. As mentioned above, decreasing the beam energy increases

the baryon chemical potential of the produced material but also decreases the (initial)

maximum temperature achieved. As the system evolves, the trajectories pass through

different regions of the phase diagram.

The phase diagram contains several other important details. At low µb the tran-

sition from a deconfined fluid back to a hadronic gas state appears to be a rapid,

smooth crossover transition [23–26]. At higher µb, however, the transition is expected
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Figure 3.2: QCD phase diagram [7].
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to change to a first order phase transition which would have an associated latent

heat [27–35]. The system may spend part of its evolution in a mixed phase. A

critical point is predicted to exist [36] that would lie at the boundary between the

smooth crossover and the first order phase transition regions. There are theoretical

predictions of the location of the critical point [37–41] but they are imprecise due to

the difficulty of the calculations. Experimental identification of the critical point is

needed in order to guide the theories [7]. It is important to note that the values on the

diagram (e.g. T and µb of the critical point, maximum temperatures at each energy)

are simply rough estimates for the purpose of illustration. The various features on

the diagram are expected or predicted but the precise details are uncertain and must

be determined experimentally.

Also shown on the diagram are lines defining both chemical and kinetic freeze out

which occur after the system has returned to a confined, hadronic gas state. These

features are also on the space-time diagram in Figure 2.2. In Chapter 2 the temporal

evolution of a heavy ion collision was described in detail. That evolution is what

occurs along the trajectories in the phase diagram. The initial highest temperature

point for each energy is reached at the moment on the space-time diagram when the

medium thermalizes, a requirement for a phase diagram to be a meaningful repre-

sentation of the material [7]. The system expands and cools, passing back from a

deconfined state to a hadronic gas and finally undergoing chemical and then kinetic

freeze out.

The main features of the QCD phase diagram have just been described. The stages

of evolution of the collisions were described in Chapter 2 and reviewed briefly in the

previous paragraph. It was discussed above how lowering the beam energy allows
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the collision to evolve through different regions of the phase diagram. Numerous

observables may be used to study heavy ion collisions. Reference [7] includes an

extensive summary of observables proposed to be studied in the Beam Energy Scan

and what information each may provide. In the next section, a sample of these

observables is reviewed to provide an outline of how different complementary analyses

(including the current work) may lead to a better understanding of the QCD phase

diagram.

3.2 Methods to probe the QCD phase diagram

Different observables probe different stages in the evolution of a heavy ion collision

and are sensitive to different features in the QCD phase diagram. Some observables

may be sensitive to the critical point if the system evolves along a trajectory that

passes near the critical point in Figure 3.2. A different set of observables show be-

havior at high energies that is consistent with the formation of a deconfined state.

It is interesting to perform the same measurements at lower energies to see if the

behavior changes or disappears. A third set of observables may be sensitive to the

type of phase transition through which the system evolves. In the rest of this chap-

ter, representative examples of these observables are described. Earlier measurements

that hinted at possibly interesting behavior, and therefore helped motivate the Beam

Energy Scan, are discussed. In some cases, more recent results already available from

the Beam Energy Scan are commented on, as well.

3.2.1 Searching for a critical point

The observables used to search for evidence of a critical point are primarily fluctu-

ations of various quantities. Reference [7] lists flucuations of the following quantities
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as being of interest: 〈pT 〉, K/π, p/π, K/p, v2. Near the critical point lattice QCD sug-

gests the susceptibilities for electric charge, Q, baryon number, B, and strangeness, S,

diverge [42]. These are conserved quantities set at the beginning of the collision and

should be preserved through subsequent evolution [43]. The large variations in sus-

ceptabilities may be reflected in different particle ratios for identified hadrons which

would also show large fluctuations if the evolution trajectory passes near the criti-

cal point. Additionally, fluctuations in mean pT and multiplicity may appear if the

chemical freeze-out temperature is near to temperature at the critical point [44]. If

one of the beam energies scanned were to pass close to the critical point the increased

fluctuations would appear as non-monotonic behavior in that quantity as a function

of beam energy.

Some of these quantities have been observed before at the lower SPS and and

at higher RHIC energies. The Beam Energy Scan remeasures some of these lower

energies with higher statistics and fills in a wide gap in
√
sNN at higher energies with

results from the same detector and the same (and more uniform) acceptance regions

and with better and more complete particle identification. An example of this type

of observable is the K/p fluctuation represented by the quantity [45]

σdyn = sign(σ2
data − σ2

mixed)
√
|σ2

data − σ2
mixed| (3.1)

where σdata and σmixed are the ratios of standard deviation to the mean of a given

particle ratio distribution (K/p, for instance) for the data and for mixed events. Sub-

tracting the mixed event distribution helps remove fluctuations with unphysical cause,

from imperfect particle identification on an event-by-event basis, for instance [45].

The definition of σdyn, makes it easy to see how fluctuations in a particle ratio will

affect the width a simple distribution. A closely related quantity νdyn,i/j is defined
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Figure 3.3: Results from NA49 [47] and STAR [46] suggested νdyn,K/p (and σdyn,K/p)
had a sign change around 8 GeV and a minimum at slightly higher energy. More
recent Beam Energy Scan results from STAR do not suggest such non-monotonic
behavior [46].

rather in terms of physical correlations of particles (letting i=K and j=p here)

νdyn,K/p =
〈NK(NK − 1)〉
〈NK〉2

+
〈Np(Np − 1)〉
〈Np〉2

− 2
〈NKNp〉
〈NK〉〈Np〉

. (3.2)

The last term will become more significant if there are correlations between K and

p particles that are generated in the collisions. The relationship between these two

quantities is νdyn ≈ σ2
dyn [46]. The definition of νdyn makes it is easier to see how

fluctuations arise from changes in the correlation of the production of particles of

different types. The beam energy dependence of νdyn is shown in Figure 3.3.

Event-by-event fluctuations in the susceptibilities may produce large fluctuations

in the number of baryons and the number of particles with strange quark content.
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Near the critical point larger fluctuations might increase or decrease σdata in Equ. 3.1

and, therefore, σdyn. These flucuations may be observed in σdyn and νdyn for ratios of

kaons to protons, proxies for the strangeness and baryon number ratio, respectively.

This is simply because kaons have non-zero strangeness (S=-1) and no baryon num-

ber (B=0), whereas the protons (S=0, B=1) are the exact opposite. In Figure 3.3,

the NA49 results and STAR results at higher energy suggested a sign change around

8 GeV and a minimum at slightly higher energy. The change from positive to neg-

ative values at low energies in Figure 3.3 may be related to a modification in the

correlation of strange and baryonic particles. This would increase the last term in

Eq. 3.2 causing the values to turn negative. If the collision evolves near the critical

point a large increase in strange particles may cause the K value in K/p to fluctuate.

The non-monotonic behavior suggested by the NA49 results made this an interesting

fluctuation observable to study in more detail.

Recent Beam Energy Scan results from STAR (the low energy STAR data in Fig-

ure 3.3) suggest that this sign change for νdyn,K/p does not occur (similar to results for

other particle ratios). Ref. [48] suggests this difference in results is due to differences

in the phase space probed by the two experiments. However, the discussion demon-

strates how fluctuation measurements may potentially reflect the presence of a critical

point near the evolution trajectory at some beam energy. This is why fluctuations

studies are an important part of the Beam Energy Scan program.
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3.2.2 Low energy turn off of QGP signatures

At high energy two of the most compelling cases for creation of a deconfined state

are the scaling of v2 for different identified particle species with the number of con-

stituent quarks and the suppression of high momentum particles in central collisions

relative to peripheral collisions, Rcp. The elliptic flow coefficient, v2, was described in

the previous chapter. If the azimuthal anisotropy of the pressure gradients is acting

on particles in a deconfined, thermalized state then all the quarks would experience

a similar preferential boost to higher momentum in the reaction plane direction.

Hadrons formed from these quarks would reflect this by exhibiting a larger azimuthal

momentum space anisotropy, v2. After re-forming into hadrons, baryons would tend

to have a larger v2 compared to mesons by a factor of 3/2, simply due to the dif-

ferent number of constituent quarks, Ncq. In the baryon case they are formed from

three quarks, each of which experienced a similar momentum boost. On the other

hand, the mesons only contain two particles that experienced a similar boost. Such

behavior is observed at intermediate pT , Figure 3.4, where v2 is plotted against the

reduced transverse mass, mT −m0. After scaling identified particle v2 (and mT −m0

in this case) by the Ncq value appropriate for each particle species, the results follow

a common curve, as seen in Figure 3.5. It was pointed out in Reference [49] that

the quantity v2/Ncq would represent the common v2 for the individual quarks in the

deconfined state. While this is not conclusive proof of deconfinement, it is neces-

sary if deconfinement does occur and is corroborated by other observations consistent

with deconfinement. If the results for lower energy collisions no longer show this

Ncq scaling, it would suggest that at lower energy the material is not entering into a

deconfined state. The QGP signature would be said to have turned off.
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Figure 3.4: Elliptic flow, v2, for identified particles follows two trends depending on
the number of constituent quarks, Ncq, in the particle [7].
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Figure 3.5: The quantity v2/Ncq shows that after scaling by the number of constituent
quarks, Ncq, all particles follow the same trend [7].

Recent results from the Beam Energy Scan do in fact show some breaking of Ncq

scaling. As Figure 3.5 demonstrates, at
√
sNN = 200 GeV, the v2/Ncq for particles

follows the same trend as for anti-particles. At lower energy, however, v2, and there-

fore v2/Ncq, for particles and anti-particles no longer agree [50]. Figure 3.7 shows that

the pT independent difference in anti-particle and particle v2 increases as the energy

is lowered, especially for baryons, which may possibly be due to increased importance

of hadronic, rather than partonic, interactions [50].

Another important signature for QGP formation is the suppression of high pT

particles. High pT particles are primarily produced early in the collisions due to hard

scattering of quarks that produce jets of particles. The belief is that in a strongly

interacting deconfined medium, high pT partons lose energy which is transferred to

33



  (GeV)NNs
0 20 40 60

)
X(

2
(X

)­
v

2
v

0

0.02

0.04

0.06 Au+Au,  0­80%
­sub EPη

+
Ξ­

­
Ξ

pp­
Λ­Λ

­
­K

+
K

­
π­+π

Figure 3.6: Energy dependence of the pT independent difference in v2 for particles and
antiparticles [50]. In other words, the difference in v2 for particles and antiparticles is
plotted as a function of pT which is then fit with a constant, horizontal line to extract
the difference independent of pT . The results also use v2(pT ) values in the centrality
range 0-80%.

34



the bulk medium. The observable Rcp provides a useful way to view the effect of

the medium on high pT particles. In central collisions a larger volume of medium

is produced so on average high pT particles will pass through more of the medium

compared to peripheral collisions. The yields of particles in central and peripheral

collisions can be measured and normalized by the number of binary collisions in each

case. The ratio of these yields, Rcp, must be one if no medium effect occurs. If

the particles do interect and lose energy in the medium there should be less high pT

particles and more intermediate and low pT particles would appear. Such behavior is

observed in 200 GeV collisions as Figure 3.7 demonstrates. In the figure, at pT ≈ 2 to

6 GeV/c, the splitting in Rcp occurs with the values for baryons being larger that for

mesons. Recombination models can successfully reproduce this behavior by assuming

the hadrons reform out of partons in a deconfined state [7, 49]. Therefore, like v2/Ncq

scaling this is another observable that suggests a phase transition has occurred at high

energy. If this phenomena were to turn off at some lower energy it would suggest that

the material may not enter into a deconfined state below some energy.

Measurements of Rcp from the Beam Energy Scan are now available and are shown

in Figure 3.8. As the energy is lowered the suppression of particles decreases and the

trend approaches one at higher pT for 39 GeV. At still, lower energies the values of

Rcp continue rising above one. The splitting of Rcp for baryons and mesons seen in

Figure 3.7 also has been observed to disappear at lower energy [3, 51]. The Cronin

effect, the rise of Rcp above one at intermediate pT in d+Au collisions, is attributed

to cold nuclear matter effects since a deconfined state is not expected [3]. Similar

behavior is seen in the lowest energy Au+Au results and may be consistent with
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Figure 3.8: Beam Energy Scan measurements of Rcp from 7.7 to 200 GeV [51].

the disappearance of the effects attributed to a deconfined medium in higher energy

collisions.

3.2.3 Evidence of a modified equation of state

If the energies scanned do not pass close enough to the critical point the vari-

ables described in Section 3.2.1 may be ineffective in identifying its location on the

phase diagram. Even so, its location may be constrained using a different set of ob-

servables sensitive to the equation of state of the material throughout the collision

evolution. A change in the type of phase transition may leave an imprint on the

beam energy dependence of these quantities. Observing evidence of a change from

a smooth crossover at one energy to a first-order phase transition at a lower energy
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would constrain the location of on the critical point and provide guidance for more

narrowly focused future studies [7].

As explained in Chapter 2, the current study measures the freeze-out eccentricity

of the collision region, one example of an observable that may be sensitive to a change

in the type of phase transition. At the same time there are some measurements from

SPS, in this class of observable, that show interesting behavior that may be consistent

with a change in the type of phase transition at lower energies. A few of these results

are reviewed here.

At SPS, the K+/π+ ratio showed interesting non-monotonic behavior suggesting

strangeness enhancement as seen in Figure 3.9 [52, 53]. The horn shape may be

consistent with entrance into a mixed phase at the peak and complete deconfinement

at the beginning of the plateau region. Assuming this, a closely related quantity

measured only at SPS, (〈K〉+ 〈Λ〉/〈π〉 shows a similar horn shape that was predicted

by the SMES model [52]. The K−/π− ratio does not exhibit a peak. This is consistent

with a scenario where strange quarks are generated by pair production in a deconfined

state. The s̄ quarks primarily form into K+ mesons while s quarks are shared between

K− and Λ particles.

An alternative explanation in terms of associated production in hadronic inter-

actions does not require formation of a deconfined state [54]. The argument is as

follows. As the collision energy increases more strange particles are produced. In

this scenario, particles with strange quark content are produced through hadronic

interactions which may create kaons and hyperons (baryons with strange quarks).

At low energy, this should primarily generate K+ and Λ particles since they are the
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lightest strange meson and strange baryon respectively. At low energy, baryon chem-

ical potential is high which makes the creation of hyperons and K+ more significant

because producing a more significant fraction of hyperons helps conserve baryon num-

ber. At still higher energies, however, the baryon chemical potential becomes small

and hadronic interactions that pair produce kaons become more favorable. In pair

production K+ and K− are produced in equal amounts. Since the enhanced produc-

tion of K+ mesons to conserve baryon number decreases, the ratio K+/π+ decreases

to a constant value. This may be due to the common mechanism, pair production, for

both pions and kaons at these higher energies. A requirement of the statistical model

that can explain the behavior of the K+/π+ ratio in this way is that the temperature

does not exceed the critical temperature, Tc ≈ 170 MeV, believed to be required for

transition to a deconfined state [54].

At the same energies the slope of the pT distributions were fit to extract the

temperature. Figure 3.10 shows that a plateau in the temperature obtained by fits

to kaon spectra emerges at SPS energies [52, 53]. This may be an indication that the

medium is entering into a mixed phase indicative of a latent heat. Putting more and

more energy into the system does not change the temperature but simply converts

more and more of the system into a deconfined state. Above some energy the system

would be completely deconfined and the temperature should rise again. As seen in

Figure 3.10, the Beam Energy Scan confirmed this plateau in the lower energy region

and filled in the region at higher energy. The new results suggest the plateau extends

to at least 39 GeV before rising again.

In Reference [55] the speed of sound (pressure gradient) is extracted from measure

pion rapidity distributions, dNπ/dy, and plotted as a function of beam energy. See
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Figure 3.11: Beam energy dependence of the speed of sound (pressure gradients)
extracted from experimentally measured pion rapidity distributions [55].

Figure 3.11. As discussed in Chapter 2, a mixed phase corresponds to a disappearance

(or at least a minimum) of the pressure gradients. There is a clear minimum in

Figure 3.11 at Ebeam ≈ 30A GeV (
√
sNN = 5 GeV) suggesting entrance into a mixed

phase begins at this energy [55].

The flow coefficients v1 and v2 may also be sensitive to the type of phase transition

since the pressure gradients that cause the azimuthal anisotropy disappear during the

mixed phase in the case of a first order transition. In the case of v2(pT ), Figure 3.12

shows that the strength in different pT ranges exibits a plateau at higher energies. This
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Figure 3.12: Elliptic flow, v2, from PHENIX appears to have a plateau as a function
of energy that begins somewhere in the SPS energy range. This is true for different
pT ranges [56].
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Figure 3.13: The rapidity dependence of v1 is predicted to have certain features that
are related to modifications in the equation of state [7, 57, 58].

might suggest entrance into a mixed phase [7]. Similar to the latent heat discussion

in regards to the temperature from kaon spectra, one could imagine that while adding

more and more energy to the system the system simply gets more and more partially

converted to a deconfined state. Due to the absence of pressure gradients the system

is not undergoing accelerated expansion during this stage of evolution leading to

the plateau in v2(pT ). This is the same region where there was speculation (see

Section 2.3) that entrance into a mixed phase might allow the freeze-out eccentricity

to plateau or rise with energy [8]. If the HBT results were to be confirmed, and these

other observations further clarified, a very interesting picture would be emerging.

In the case of v1, several theoretical predictions suggest a possible “wiggle” struc-

ture may appear in the v1(y), or the rapidity dependence may simply vanish at some
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low energy [57–61]. This is shown in Figure 3.13. The relative slopes of v1(y) for pi-

ons and protons at different energies can provide further information. Current Beam

Energy Scan results suggest that 10-40% central proton v1 does change sign above

10 GeV to agree with pion v1 slope at higher energies, as seen in the upper panel

of Figure 3.14 [62]. The estimated slope of v1, dv1/dy
′
, was also extracted for only

protons that were transported to the mid-rapidity region from the fragmentation re-

gions [62]. In this case, a significant minimum appears which can be seen in the lower

panel of Figure 3.14. This may be consistent with a softening of the equation of state,

although further work may be needed for verification of this conclusion [62].

3.3 The contribution of this analysis

The observables discussed in the previous section taken together are intended to

help map out the QCD phase diagram. They provide complementary information.

The sample of observables reviewed not only provides an idea of earlier results that

motivated the Beam Energy Scan at RHIC, but also gives a sense of the general

approach of the program to answer important questions about the QCD phase dia-

gram, and demonstrates how some of the new results from the Beam Energy Scan

are already beginning to improve our understanding of QCD matter.

This thesis fits into the bigger effort to map out the QCD phase diagram by

searching for signs that the equation of state at low energy is different from the

equation of state at high energy. As described earlier, if the equation of state at

low energy develops a flat region indicating a change from a smooth cross-over phase

transition to a first order transition, the freeze-out shape could potentially show non-

monotonic behavior. Such an observation would also automatically constrain the
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range in beam energy where the QCD critical point could be located. Taken with all

the other observables, it is hoped that the new information learned from the Beam

Energy Scan as a whole will provide a more clear picture of the properties of QCD

matter. In any case, the wealth of new data are already providing new, interesting

observations that will provide improved constraints for the models that are used to

describe heavy ion collisions.

In the remainder of this thesis the detector, experimental techniques, and theory

underlying the extraction of the freeze-out eccentricity are described and the results

presented and discussed.
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Chapter 4: A detector overview

4.1 The Relativistic Heavy Ion Collider (RHIC)

Data used in this analysis were collected at the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Lab. The facility, pictured in Figure 4.1, consists

of a series of particle accelerators that accelerate heavy ions or protons in stages up

to 9.8 GeV before injection into the two RHIC rings. RHIC then accelerates the

particles to the desired collision energy. For Au+Au collisions the maximum center

of mass energy is
√
sNN = 200 GeV. For p+p collisions even higher energies up to

√
sNN = 500 GeV can be produced and the protons can be polarized allowing the

study of physics related to the proton spin.

For the Beam Energy Scan program the collider provided Au+Au collisions at

7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV. The collisions at 7.7 GeV actually required

the collider to decelerate the Au ions since this is below injection energy. In the near

future the Beam Energy Scan program may be extended by colliding beams with

fixed targets located near the detectors. The collisions take place at six interaction

regions around the RHIC ring where the beams cross. The collisions are measured by

two large detectors: Solenoidal Tracker At RHIC (STAR) and the Pioneering High
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Figure 4.1: The RHIC accelerator complex at Brookhaven National Laboratory.

Energy Nuclear Interaction eXperiment (PHENIX). The events used in this analysis

were measured using the STAR detector.

4.2 The STAR detector

STAR, shown in Figure 4.2, is a wide acceptance detector designed to efficiently

measure low momentum hadrons [63]. The Time Projection Chamber (TPC) primar-

ily measures charged hadrons. The calorimeters detect primarily electrons, positrons

and photons (many of which are due to the decay of neutral pions). A Time-of-flight

(TOF) detector helps extend particle identification to higher momenta. Other detec-

tors including the Beam-Beam Counters (BBCs), Zero Degree Calorimeters (ZDCs),
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Figure 4.2: The STAR detector and its subsystems.

and Vertex Position Detectors (VPDs) help to trigger on events that occur near the

center of the detector.

The main detector for this analysis is the Time Projection Chamber [64, 65] which

is a large cylinder (inner radius 0.5 m, outer radius 2 m) with a cathode plane at the

center and anode planes at each end to create a uniform electric field. It can measure

charged particles with pseudo-rapidity in the range −1 < η < 1 with 2π azimuthal

acceptance. The TPC is filled with P-10 gas (90% Argon, 10% methane) and operates

inside a magnetic field (0.5 T for all the energies used in this analysis). Both the

magnetic field and the electric field lie parallel to the beam direction. As charged

particles fly away from each collision vertex the magnetic field bends the trajectories

allowing the charge to be identified. Figure 4.3 shows the charged particle tracks in

an event reconstructed by the TPC.
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The charged particles also interact with the P-10 gas, losing a little energy by

ionizing the gas molecules. The energy loss, dE/dx, along a particles path depends

on the type of particle and allows for particle identification. The electrons from

each track drift in the electric field at 5.5 µm/ns to each end of the TPC. Near the

endcaps a set of wires at high potential (the anode plane) creates a strong electric

field. When the drift electrons enter this field they are accelerated to high enough

energy to ionize additional gas particles which in turn ionize even more particles.

The resulting avalanche of electrons is collected by the wires. The positive ions that

remain cause an image charge on the final pad plane. This is the electrical signal

that is measured. The x and y locations of each point on the track are determined by

the x and y locations of the pads that record signals. The z location is determined

by combining the time a signal is recieved with the constant drift velocity of the

electrons. This allows full three dimensional reconstruction of the tracks.

The size of the electrical signal detected at the endcap is proportional to the

number of original electrons liberated by the track which depends on the momentum of

the particle and the mass of the particle. From a plot of dE/dx versus momentum such

as Figure 4.4 it is possible to separate the low momentum pions from the electrons,

kaons and protons. Additional information about the specific particle identification

criteria used in this work can be found in Section 7.2.

Detector inefficiencies and measurement uncertainties lead to imperfect recon-

struction of individual tracks and pairs of tracks which can have an adverse affect

on the HBT measurements. How these inefficiencies arise are described here but the

description of how to remove or account for such effects are discussed later in Chap-

ter 7. First, it will be useful to describe how tracks are reconstructed. As described
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Figure 4.4: Energy loss, dE/dx, as a function of momentum allows particle identifi-
cation. Figure taken from [64].
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above, particles created in the collision ionize gas particles in the TPC volume. The

electrons that are liberated in this process drift to the endcaps and eventually a signal

is detected on individual pads. The TPC is designed so the signal from a single track

is split among roughly three pads which allows estimation of the track position at

a scale that is finer than the pad sizes (consider a weighted average of the signal in

three adjacent pads or a Gaussian fit to the signal distribution on three pads versus

just the pad location with the most signal). The time after the beginning of the

event that the signals are detected at the endcap combined with the constant drift

velocity (5.5 µm/s) allows identification of the position along beam direction (z-axis)

where the particle passed. After being recorded, these hit locations are then fit with

a parameterization for a track helix to identify tracks. The tracks are extrapolated

back to the beam line. Many of the tracks will extrapolate back to a common location

along the beam line within some range of uncertainty. The place were the most tracks

converge within some radius (a few centimeters) is identified and the mean x, y, and

z coordinates of the distances of closest approach (DCA) of those tracks is identified

as the primary vertex position. The tracks used in this calculation are referred to as

primary tracks and are the tracks used later in the analysis. The primary tracks are

refit requiring the additional point at the primary vertex be included. Other tracks

may come from decays of primary particles or may be noise from other interactions

between particles and the detector or from pile-up events (extra events that occur in

the detector at a similar time which may cause tracks unrelated to the event that was

actually triggered).

There is experimental uncertainty in different steps of these calculations. For each

hit measured on a TPC pad row there is some uncertainty in the exact position. As
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the signals reach the pads on the endcaps they are binned in finite time intervals

during which causes some uncertainty in the z-position of each hit as well. When

the track helix is fit, which allows determination of the momentum of the track,

there is a corresponding uncertainty in the momentum of the track which means

there is imperfect momentum resolution. For the HBT analysis which relies on the

relative momentum of track pairs this will slightly broaden the relative momentum

distributions. For STAR, the effect on HBT results has been studied and estimated

to be quite small, 1% to 2.5% for central and peripheral collisions, respectively [66].

An important inefficiency that can have a strong influence on HBT measurements

is the ability of the detector to resolve two tracks that are close together. Because of

the finite size of the pads that detect signals two tracks that are close together will

cause drift electrons that arrive at a similar point on the endcaps. The signal from

the two tracks may overlap and at some small separation hits from two tracks can

not be resolved. If many hits along two tracks can not be resolved two tracks may

be reconstructed as a single track. These tracks are referred to as merged tracks.

Alternatively, if a single track produces hits on many pad rows, uncertainties on the

location of the hits may allow the track finding algorithm to be tricked such that it

reconstructs two tracks when really there is only one. These tracks are referred to

as split tracks. These two effects are important to account for because, as described

later in Chapter 7, merged tracks will reduce the signal extracted in an HBT analysis

while split tracks will add false pairs to the HBT analysis. Methods of dealing with

these effects were developed in the past [66, 67], are applied in this analysis, and are

discussed later after the HBT analysis has been described.
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Chapter 5: HBT interferometry

Hanbury Brown Twiss interferometry is a technique designed to extract spatial and

temporal information in particle collisions. The original application was by Hanbury

Brown and Twiss to measure the diameters of stars [68]. The technique was developed

independently and applied in particle physics by Goldhaber, et al., to study angular

distributions of pion pairs in pp̄ anhilations [69]. Quantum statistics appeared to

cause an enhancement in pairs with small relative momentum [69]. Over time the

method has evolved into a precision tool for measuring the space-time properties of

the regions of homegeneity at freeze-out in heavy ion collisions [70]. In particular, the

size and shape of the homogeneity regions emitting particle pairs can be obtained and

information related to the lifetime, and duration of particle emission can be inferred.

Dynamics present in the collision and final state interactions can modify the extracted

source shapes. If the analysis is performed differentially in bins relative to the reaction

plane a connection can be established between the shape of the homegeneity region

and the shape of the entire fireball at kinetic freeze-out [8]. This chapter elaborates on

some of the theory underlying the analysis performed in this thesis. The experimental

details of the analysis are left for Chapter 6.
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5.1 Theory of HBT

HBT exploits a quantum statistical effect which determines the distribution of the

relative momentum of correlated particles generated during the collision of two heavy

nuclei. Figure 5.1 shows how HBT exploits a connection between the measured

particle momenta and the femtoscopic source sizes . The correlation function is

defined by the Koonin-Pratt equation [71, 72]

C(~q,~k) =

∫
d4rS(~q, r,~k)|ψ2(~r, ~q)|2 (5.1)

where S(~r) is the distribution of separation distance between pairs of particles, ~r =

~ri−~rj. The squared, two particle wave-function |ψ2(~r, ~q)|2, is the probability density

for observing a particle pair emitted with a given separation distance in the source and

a given relative momentum ~q = ~pi− ~pj. The correlation function and source function

are functions of the total pair momentum, ~k. For bosons (fermions), interference of

the single particle wavefunctions lead to the two particle wave-function

ψ2(~r, ~q) ≈ ψ(~r1, ~p1)ψ(~r2, ~p2)± ψ(~r1, ~p2)ψ(~r2, ~p1) (5.2)

where the sign is determined by the type of quantum statistics (Bose-Einstein or

Fermi-Dirac) that is appropriate for the particles being studied. The current analysis

is performed on identical pions (bosons) so the + sign is appropriate.

The correlation function may be viewed in terms of probabilities. The probability

of observing a single particle with momentum pi is

P (pi) =

∫
d4xS(xi, pi) (5.3)

and the probability of observing a pair of particles with momenta pi and pj is

P (pi, pj) =

∫
d4xid

4xjS(xi, pi)S(xj, pj)|ψ2(~r, ~q)|2. (5.4)
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Figure 5.1: HBT diagram connecting particle momenta to source shape.

Here the functions S(xi, pi) are the single particle probability densities for emission

of a single particle with momentum, pi, from emission point, xi, in the source. The

derivation in the next section connects these single particle probability densities to

the distribution of separation distance for particle pairs, S(~q, ~r,~k), in Eq. 5.1 using

some reasonable approximations. In the two particle case, Eq. 5.4, the product of

two single particle probability distributions are weighted by the two-particle wave-

function which modifies the probability appropriately for quantum statistics. In both

cases, because the particles are observable, they are real and must be on-shell which

requires E2
p = p2 +m2 and therefore p0 = Ep constrains the four-momenta. In terms

of these probabilities the correlation function can be expressed as

C(~q) =
P (~p1, ~p2)

P (~p1)P (~p2)
. (5.5)

If particles are emitted independently from one another then P (pi, pj) = P (pi)P (pj)

and the correlation function would be unity. This would be the case if quantum

statistics were not important. It would also be true if the pairs were formed with
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particles from different, mixed events which will be exploited later in the construc-

tion of the denominator in the experimental correlation function. If emission of the

particles in the pair obeys Bose-Einstein statistics then there will be an enhancement

at low relative momentum, ~q, in the probability of observing particles with pi and pj

and therefore an enhancement in C(~q) for small values of ~q. If the particles being

studied obey Fermi-Dirac statistics the correlation function will instead exhibit a de-

ficiency in pairs at low ~q. In addition to quantum statistics, final state interactions

and collective dynamics can modify the particle momenta (and relative momenta)

which modifies P (pi, pj) and therefore the correlation function signal. These will be

discussed later. While this discussion has explained qualitatively how a correlation

analysis can be used to extract femtoscopic length scales from the observed final state

particle momenta, an example derivation (there are many variations in the literature)

can provide a more in depth understanding of the source/wavefunction description of

the correlation function and will allow to discuss some approximations that enter the

derivation.

5.2 Deriving the correlation function

The probability of observing a single particle with momentum pi emitted from

a point xi was given by Equ. 5.3. The probability of observing two particles with

momenta pi and pj emitted from the points xi and xj in the source was given by

Equ. 5.4. These already connect the source distributions to the probabilities. How-

ever, to get to the final form of the correlation function requires some approximations

in order to convert the distributions of sources that emit single particles, S(xi, pi), to

the pair separation distibribution, S(r), in Eq. 5.1. The first step in the derivation
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is to express the two particle wave function. For the moment, contributions from the

Coulomb interaction and strong interactions are excluded from the two particle wave

function. Because the particles measured are free streaming through the detector,

they can be represented as plane waves

ψ(xi, x
′
i, pi) ≈ ei(x

′
i−xi)pi (5.6)

where the primed variable is the location where the particle is observed and the

unprimed variables are the values at the source when the particle is emitted. Substi-

tuting in Eq. 5.2 the two particle wave function becomes

ψ(xi, xj, pi, pj) =
1√
2

(ei(xi−x
′
i)piei(xj−x

′
j)pj ± ei(xi−x

′
j)pjei(xj−x

′
i)pi). (5.7)

Squaring this, the primed variables cancel leaving

|ψ(xi, xj, pi, pj)|2 = 1± cos((xi − xj)(pi − pj)). (5.8)

Substituting into Eq. 5.4, and identifying ~q = ~pi − ~pj and ~r = ~xi − ~xj, yields

P (pi, pj) =

∫
d4xiS(xi, pi)

∫
d4xjS(xj, pj)±

∫
d4xid

4xjS(xi, pi)S(xj, pj) cos(qr)

(5.9)

The first two terms are just the single particle probabilities, Eq. 5.3, and the second

term arises from the quantum interference. Substituting Eqs. 5.3 and 5.9 into Eq. 5.5,

the correlation function becomes

C(~q,~k) = 1±
∫
d4xid

4xjS(xi, pi)S(xj, pj) cos(qr)∫
d4xiS(xi, pi)

∫
d4xjS(xj, pj)

. (5.10)

The goal is to express the correlation function in terms of only the relative momen-

tum, ~q, which can be measured, and the source distributions only in terms of the

separation of the particles in the source, ~r, which is the information to be extracted
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from the correlation function. The source distributions are themselves functions of

both single particle momenta and position of the single particle emission source so

an approximation is needed, the smoothness approximation. Using the relative and

average pair momenta, ~q and ~k, the source functions can be written as [73]

S(xi, pi)S(xj, pj) = S(xi, k +
q

2
)S(xj, k −

q

2
) ≈ S(xi, k)S(xj, k). (5.11)

The approximation is valid for small ~q and assumes that the source functions have a

smooth dependence on the particle momenta [73, 74]. These seem reasonable. For

instance, the signal in the two-pion correlation function appears at small ~q and pairs

with small average pair momenta are excluded from the analysis. Typically, a smooth

Gaussian shape is assumed in order to extract the main length scales that describe

the two particle emission sources. The approximation is valid in both the numerator

and denominator of Eq. 5.9. Using the approximation yields

C(~q,~k) = 1±
∫
d4xid

4xjS(xi, k)S(xj, k) cos(qr)∫
d4xiS(xi, k)

∫
d4xjS(xj, k)

. (5.12)

The last step is to convert from specific positions of sources, xi and xj, to a relative

separation, r = xi − xj. Similar to the momentum conversion, the quantity X =

(xi + xj)/2 can be defined so xi = X + r/2 and xj = X − r/2. Assuming X is

the space-time position of the center of the source emitting the pair, r/2 may be

interpreted as a measure of the width of the source centered at X. In this pair center-

of-momentum coordinate system, Reference [73] defines what the authors refer to as

the normalized relative distance distribution

d(r, k) =

∫
d4X

S(X + r
2
, k)∫

d4rS(r, k)

S(X − r
2
, k)∫

d4rS(X − r
2
, k)

. (5.13)

Under the assumption of the smoothness approximation and conversion to pair center-

of-momentum coordinates, Eq. 5.13 relates the single particle emission functions
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S(xi, pi) to the two-particle relative separation distribution. In other words, d(r, k),

is essentially S(r) in Eq. 5.1. Substituting into Eq. 5.12 yields

C(~q,~k) = 1±
∫
d4r cos(qr)d(r, k). (5.14)

where the integration has been converted from d4xid
4xj to d4rd4X. They further

simplify this by an assuming on-shell pair momenta qk = q0k0 − ~q · ~k = 0 is approx-

imately true. Then using the pair velocity, ~β = ~k/k0, yields q0 = ~β · ~q. Noting that

qr = ~q · ~r − ~q · ~βt allows the integal to be written as

C(~q,~k) = 1±
∫

cos(~q · ~r)
∫
dtd(~r + ~βt, t; k). (5.15)

By defining the relative source distribution [73]

S(~r,~k) =

∫
dtd(~r + ~βt, t;~k) (5.16)

it is apparent that the quantity the correlation function measures is the shape of the

source separation distribution averaged over time. Finally, the correlation function

can be written as

C(~q,~k) = 1±
∫
d3rS(~r,~k) cos(~q · ~r) (5.17)

Comparing to Eq. 5.1, in this derivation the integral has been reduced from four

dimensions to three dimensions. Information related to how the emission source

evolves with time is lost due to the integration over time in Eq. 5.16. While no

information about how the emission source function evolves during an individual

collision can be obtained in this formalism, dynamics at work in the collision can leave

patterns in the dependence of the correlation function on the average transverse pair

momentum, ~kT . The size and shape of the two-particle relative separation function

can be extracted from correlation functions constructed for different values of ~kT and
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the dependencies on ~kT can be related to physical quantities such as the lifetime of

the collision evolution or the duration of particle emission. So information about

how the fireball produced in the collision evolves can be inferred from HBT analyses.

The derivation reviewed here does demonstrate that a connection can be established

between the measured particle momenta and the relative separation of particles in

the source.

5.3 Final state interactions

The derivation in the last section assumed final state interactions were not present

and only quantum statistics played a role in the correlation between particles. In

different circumstances effects due to strong force interactions, Coulomb force inter-

actions, or a mean field due to the rest of the participant zone might also contribute

significantly to the two-particle correlation function. For femtoscopy with charged

pions, the strong force is negligible. The reason is the typical separation for pions in

the source is several femtometers (as will be measured later) while the typical range

for strong interactions between pions is 0.2 fm [75]. Studies accounting for the strong

force demonstrate that the effect is very small in pion interferometry. In fact, for

like-sign pion analysis it is negligible [66].

Mean field effects due to net charge in the collision fireball could potentially be

significant. For the high energies studied in this analysis such an effect has also been

found to be negligible [76, 77]. At high energy the much of net charge is conserved in

the fragmentation region. Constrast this with the situation at very low energies where

more of the net charge remains in the fireball at mid-rapidity and the colliding nuclei

evaporate into smaller, often multiply charged, nuclei, therefore allowing a relatively
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large mean field effect on the outgoing particles. Anyway, it was pointed out in [67]

that such an effect would apply similarly to both particles in each pair so the relative

momentum for each pair would be rather unchanged.

The Coulomb interaction between pions in each pair turns out to be significant in

charged pion correlations. In the derivation in the previous section, the two particle

wave function was constructed out of plane waves representing the observed particles

but subject to Bose-Einstein statistics. The source distribution, S(~r), describes distri-

bution of the relative separation of particles in each pair when they are emitted. Even

considering a Coulomb interaction, when observed far from the source, the particles

are still described approximately by plane waves but the source distribution itself

appears distorted by the Coulomb interaction. More specifically, the wave function is

really a Coulomb wave that approximates a plane wave asymptotically [78]. For like-

sign particles forming a pair, the repulsive Coulomb force will tend to increase both

the observed separation distance, ~r, and the relative momentum, ~q. From Eq. 5.17,

it is clear that if the relative separation distribution changes the correlation function

will change too. From the increase in the relative momentum, ~q, it means that for

identical bosons, the enhancement at very low ~q will be reduced by the Coulomb

interaction.

In theory, one can introduce a correction to the source distribution by multiplying

by a correction factor, KCoul(qinv). Then the correlation function, Eq. 5.17, can be

written as [78]

C(~q,~k) = KCoul(qinv)(1±
∫
d3rS(~r,~k) cos(~q · ~r)) (5.18)
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The value of KCoul(qinv) in each ~q bin of the correlation function can be calculated

for each ~q bin due to the relation from [79]

KCoul(~q) ≡
∫
d3rS(r)|ψCoul(q, r)|2. (5.19)

This quantity is computed numerically using mixed event pairs. A mixed event dis-

tribution in ~q-space is created with the entry for each pair weighted by qinv. Later this

Coulomb weighted mixed event distribution can be divided by the unweighted mixed

event distribution and the result is the change in the correlation function appropriate

for each bin in ~q-space. There are no Bose-Einstein effects in this quantity due to

using mixed events, and acceptance and efficiency effects cancel as the same pairs

enter both distributions. This Coulomb effect in each ~q bin is simply included as a

constant in a later step when the correlation function is fit to extract the HBT radii

that describe the source region. This experimental technique for accounting for the

Coulomb effect, called the Bowler-Sinyukov method, is described further in the next

Chapter.

5.4 Space-momentum correlations

The discussion in the last two sections has assumed a static source. In other words

the collective flow of particles discussed earlier has not yet been taken into account.

In a static source the size and shape of the region emitting particles may correspond

to the entire fireball at kinetic freeze-out. The presence of collective behavior, how-

ever, will result in particles emitted from one region to have a preferential direction

compared to particles emitted from a different region. The source sizes probed by
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the correlation function correspond to a region that is smaller than the fireball pro-

duced in the collision. Figure 5.2 illustrates this behavior. The contours correspond

to emission regions, often called regions of homogeneity. Radial flow boosts particles

near the top of the participant zone preferentially out of plane. Particles emitted in

the reaction plane are emitted preferentially in the reaction plane direction. In other

words, collective flow introduces a correlation between the position where a particle

is emitted and its momentum, a space-momentum correlation. Particle pairs that are

more effected by the collective flow, those boosted to higher kT , experience stronger

space-momentum correlation and therefore correspond to smaller emission regions.

The extracted HBT radii show a systematic decrease at higher kT as will be observed

later in the results in Figure 8.13. The effect of space-momentum correlations is

included in Eqs. 5.17 and 5.19 by including the ~k dependence in C(~q,~k) and S(~r,~k).

All the discussion of the correlation function in the previous sections is still appli-

cable. The presence of space-momentum correlations just means that the extracted

source sizes measure, not the entire participant zone, but rather only a smaller region

of the total volume. In the next few sections, a connection will be made between

variations in the shape of these smaller regions of homogeneity and the shape of the

entire participant zone at freeze-out. Such a connection is essential to the azimuthally-

differential analysis.

5.5 Gaussian parameterization

To extract the shape and size of the emission function requires some assumption

about the shape. Usually it is assumed that the source function is a three-dimensional

Gaussian which permits extraction of the widths of the distribution. The widths
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Figure 5.2: Correspondence between regions of homogeneity and entire participant
zone in non-central collisions. The presence of anisotropic pressure gradients intro-
duces space-momentum correlations. This figure is reproduced from Reference [80].

67



are the HBT radii. While the shape is known to have some non-Gaussianess this

assumption allows estimation of the main length scales of the source. To get a sense

of what these radii describe, consider the first few terms in the Taylor expansion of

cos(~q · ~r) in Eq. 5.17

C(~q,~k) ≈ 1±
∫
d3rS(~r,~k){1− α(rirj) + ...} (5.20)

Notice that integration of rirj over the probability density S(~r) define a variance

σ2
ij = 〈rirj〉 =

∫
d3rS(~r,~k)rirj. (5.21)

The separation distance obtained in this formulation may be interpreted as the root-

mean-square widths of the region of homogeneity, S(~r). Assuming S(~r) is a Gaussian,

as in [73], allows writing the expression

S(~r) ≈ S(X)S(~r) ≈ S(X)e−qiqj〈rirj〉. (5.22)

Then the correlation function will also have a Gaussian form as in

C(~q,~k) = 1± e−~q†R̄2~q = 1± e−R2
ijqiqj (5.23)

By measuring the relative momentum distribution and fitting with a Gaussian of

this form, using R2
ij as the fit parameters allows to extract the root-mean-square

size of the regions of homogeneity. Once again, these radii describe smaller regions

of homogeneity, not the entire participant zone. To make a connection between

the regions of homogeneity and the shape of the entire participant zone, it will be

convenient at this point to choose a specific coordinate system in which to express

the momenta and radii.
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Figure 5.3: The Bertsch-Pratt, out-side-long (o-s-l) coordinate system. The upper
part of the figure demonstrates how the transverse components of the momentum
difference, qout and qside are defined relative to the average pair transverse momentum,
kT . The lower part of the figure demonstrates how the longitudinal component, qlong,
is defined parallel to the beam direction.
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5.6 Bertsch-Pratt coordinate system

The relative pair momentum, ~q, is often projected into the Bertsch-Pratt [81–83]

coordinate system pictured in Figure 5.3. The three axes are labeled out, side, and

long (or o, s, and l) and are oriented such that qout lies along the direction of the

average transverse pair momentum, ~kT , while qlong lies along the “longitudinal” beam

direction, and qside is perpendicular to the other directions and is therefore also in the

transverse plane. Further information related to these coordinates can be found in

Section 6.2 which is relavent to the experimental details of the analysis. The relative

momentum is expressed in the longitudinal co-moving system (LCMS) in which the

longitudinal component of the pair velocity vanishes. To extract the bulk shape of

the particle emitting regions, a Gaussian parameterization is typically used:

C(~q) = 1 + (e−q
2
oR

2
o−q2sR2

s−q2l R
2
l−2qoqsR2

os−2qoqlR
2
ol−2qsqlR

2
sl) (5.24)

Fitting the measured correlation function with Eq. 5.24 permits extraction of the

HBT radii. The diagonal radii, R2
o, R

2
s, and R2

l are the widths of the emission re-

gions. The cross terms become non-zero if a correlation appears between different

relative momentum components which appears as a tilt in the ~q-space distribution.

In Figure 5.4, these cross terms are predicted to exhibit oscillations relative to the

first order event plane - tilting first one way and then the other. In the next chapter

similar, experimental projections relative to the second order event plane are mea-

sured. In that case the first order oscillations of R2
sl and R2

ol average to zero but the

R2
os cross terms still exhibits a clear second order oscillation. More elaboration on

this can be found in Section 6.2. The diagonal terms, R2
out, R

2
side, and R2

long are also
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predicted to show second order oscillations relative to the event plane. Measurement

of these oscillations will allow extraction of the shape of the entire participant zone.

In the azimuthally differential analysis several correlation functions are constructed

for different angular bins. These can each be fit with a Gaussian parameterization

related to Eq. 5.24 to extract the HBT radii parameters as described in more detail in

Section 6.2. Alternatively, a global fit method, described in Section 6.7 can simultane-

ously fit the distributions for all angular bins to directly extract the participant zone

shape. These experimental details are explored in the next chapter. The theoretical

connection between the shape of the emission regions and the entire participant zone

is explored in the next section.

5.7 Extracting the shape of the participant zone

As mentioned before space-momentum correlations reduce the correspondence be-

tween the shape of the emission regions and the entire particpant zone. In non-central

collisions, elliptic flow affects particles emitted in the reaction plane differently than

particles emitted out of the reaction plane. The shapes of the emission regions mea-

sured in bins relative to the event plane exhibit sinusoidal variations. In particular the

HBT radii oscillate. The more elliptical the freeze-out shape, the larger the amplitude

of the oscillation. The shape of the fireball at kinetic freeze-out can be described by

widths in space-time (σx, σy, σz, σt) as pictured in Figure 5.5. From Reference [80],

the connection between the HBT radii and the shape of the participant zone may be

expressed by the following equations:

R2
o(φ) =

1

2
(σ2

x + σ2
y) +

1

2
(σ2

y − σ2
x) cos(2φ) + β2

Tσ
2
t , (5.25)
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Figure 5.4: Two dimensional projections of a correlation function in the qo-qs, qs-ql
and qo-ql planes for like-sign pions at mid-rapidity. All scales are in GeV/c. This
figure is taken from Ref. [80].
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Figure 5.5: Depiction of the widths in three dimensions of the widths of the source
region at kinetiv freeze-out in a non-central heavy ion collision. On the left are the
widths in the transverse plane, in the reaction plane, σx, and normal to the reaction
plane, σy. The width of the source in the longitudinal direction, σz are shown on the
right where σT (φ) =

√
σ2
x + σ2

y varies with azimuthal angle, φ. In reality these are
modified by the presence of the temporal width, σt, appropriate for four-dimensional
space-time description of the source. This leads to dependence of the HBT radii that
describe the same source region on the space-momentum correlations induced by flow
effects.
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R2
s(φ) =

1

2
(σ2

x + σ2
y) +

1

2
(σ2

y − σ2
x) cos(2φ) (5.26)

R2
l (φ) = σ2

z + β2
l σ

2
t (5.27)

R2
os(φ) = −1

2
(σ2

y − σ2
x) sin(2φ) (5.28)

R2
ol = βlβTσ

2
t (5.29)

R2
sl = 0. (5.30)

The equations in Reference [80] allow first order oscillations. In this thesis only the

second order event plane is determined so the first order oscillations of the cross terms

R2
ol and R2

sl average to zero at mid-rapidity and are omitted in the equations listed

above. However, away from mid-rapidity the R2
ol term becomes non-zero. Another

note, is that the dependence in Eq. 5.29 for R2
ol on the pair velocities and σ2

t is valid

for a static model only [83, 84]. Other assumptions, of transverse or longitudinal flow

for instance, result in more complex dependence of R2
ol on different quantities [83, 84].

The equations above are strictly valid only when there is no flow [80]. The validity

of these expressions in the presence of flow will be discussed in Section 7.4.

The R2
s term contains no term with σ2

t , βT , or βl and therefore contains primarily

spatial information. The other radii, R2
o, R

2
l , R

2
os and R2

ol mix spatial and temporal

information and therefore may be affected by dynamical influence of radial or elliptical

flow. Since R2
s oscillates relative to the event plane, the larger the difference between
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regions of homogeneity in the in-plane and out-of-plane directions the larger the size

of the oscillation. This will be exploited to extract the freeze-out shape as described

in the next chapter.

75



Chapter 6: Experimental HBT analysis

In this chapter, an overview of the experimental HBT analysis is provided in-

cluding the extension to an azimuthally differential analysis and extraction of the

freeze-out eccentricity. The material in this section is adapted from Section IV and

V of [85], the paper corresponding to the material in this thesis.

6.1 The correlation function

The experimental correlation function is constructed by forming the distributions

of relative momenta, ~q = (~pi − ~pj). A numerator, N(~q) uses particles from the same

event, while a mixed event denominator, D(~q), uses particles from different events.

The numerator distribution is driven by two-particle phasespace, quantum statistics,

and Coulomb interactions, while the denominator reflects only phasespace effects.

Since quantum statistics and final state interactions are driven by freeze-out geom-

etry [70], the ratio N(~q)/D(~q) carries geometrical information. This ratio defines

the correlation function. The denominators were constructed with pairs formed from

mixed events where the mixed events were required to have similar centrality, z vertex

location, and event plane angle as described earlier. In the azimuthally differential

analysis, four correlation functions were formed corresponding to four 45◦ wide angu-

lar bins relative to the event plane centered at 0◦ (in-plane), 45◦, 90◦ (out-of-plane),
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and 135◦. The angle between the transverse momentum for each pair and the event

plane is used to assign each pair to one of the correlation functions. Detector inef-

ficiency and acceptance effects apply to both the numerator and denominator so, in

taking the ratio to form the correlation function, these effects largely cancel.

6.2 Bertsch-Pratt parameterization

The relative pair momentum, ~q, is projected onto the Bertsch-Pratt [81–83], out-

side-long (or o-s-l), coordinate system outlined in Chapter 5. The relative momentum

is expressed in the longitudinal co-moving system (LCMS) in which the longitudinal

component of the pair velocity vanishes.

To extract the bulk shape of the particle emitting regions, a Gaussian parameter-

ization is typically used:

C (~q) = (1− λ) +KCoul(qinv)λ
(

1 + e−q
2
oR

2
o−q2sR2

s−q2l R
2
l−2qoqsR2

os−2qoqlR
2
ol

)
(6.1)

The λ parameter accounts for non-primary particles that may come from resonance

decays and misidentified particles [86]. Particles that exhibit Bose-Einstein correla-

tions will be emitted with similar positions and therefore can experience Coulomb

interactions as well. The other particles represented by the (1 − λ) term are emit-

ted from larger seperations and will not experience either type of correlation. The

values of KCoul account for the Coulomb interaction as discussed in the next section.

Theoretical considerations related to KCoul were reviewed in the last chapter as well.

The R2
ol term vanishes at mid-rapidity, but becomes positive (negative) at for-

ward (backward) rapidity in both azimuthal and non-azimuthal analyses [83]. For

the azimuthally integrated analysis R2
os vanishes, while in an azimuthally differential
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Figure 6.1: Two dimensional projections of a correlation function in the qo-qs, qs-
ql and qo-ql planes for like-sign pions at mid-rapidity in 20-30% central, 27 GeV
collisions with 0.15 < kT < 0.6 GeV/c. All scales are in GeV/c. In each case the
third component is projected over ± 0.03 GeV/c. The emission angles relative to the
event plane are within ±22.5◦ of the bin centers indicated along the left side. The
tilt in the qo-qs plane is clearly visible. Contour lines represent projections of the
corresponding fit.
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analysis a second order sinusoidal variation appears relative to the reaction plane.

Parametrically, a non-zero cross term corresponds to a tilt of the correlation func-

tion in ~q-space. This can be seen clearly in Fig. 6.1 in the qout-qside plane. At 45◦

there is a tilt resulting in a positive R2
os cross term. At 135◦ there is an opposite tilt

corresponding to a negative R2
os crossterm. It may be informative to compare and

contrast results in Figure 6.1 with the predicted oscillations relative to the first order

event plane in Figure 5.4. The R2
ol and R2

sl tilts average to zero in Figure 5.1 because

they come from a 2nd-order analysis at mid-rapidity. Away from mid-rapidity the R2
ol

cross term becomes non-zero and is included as a parameter in Eq. 6.1. The R2
sl term

remains zero by symmetry and is therefore excluded as a fit parameter. The interplay

between the cross terms and the inherent non-Gaussianess of the correlation function

is discussed later, where folding the relative momentum distributions allows covaria-

tions in the fit parameters that would strongly effect the results. In this analysis, no

folding of ~q-space is performed, eliminating this effect.

In the azimuthally differential analysis, several correlation functions are con-

structed for different angular bins. These are each fit with Eq. 6.1 to extract the

fit parameters. The relationship between these fit parameters describing the regions

of homogeneity and the shape of the source region (the collision fireball at kinetic

freeze-out) has been described in the last chapter and in several references, such as

[80, 87, 88], for boost invariant systems.

6.3 Coulomb interaction

Particles that are nearby in phase space and carry the signal in the correlation

function will also experience Coulomb interactions. The quantum interference signal,
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due to Bose-Einstein statistics for charged pions, allows extraction of the shape of the

emission region from the relative momenta of pion pairs [70]. However, the correlation

function also contains a signal due to final-state Coulomb interactions. The effect of

the Coulomb interaction must be taken into account in order to correctly extract

the HBT radii. Different methods of accounting for the Coulomb interaction were

studied systematically in [86]. The most appropriate method, the Bowler-Sinyukov

method [89, 90], is used in this analysis. The Coulomb interaction is computed for

each pair with relative momentum components, (qo, qs, ql), that enters the analysis.

The average interaction in each (qo, qs, ql) bin is included as a constant, KCoul, in the

fit parameterization. As described in the last chapter, KCoul is the squared Coulomb

wave function integrated over the entire spherical Gaussian source. The same radius,

5 fm, is used as in earlier analyses. In Eq. 6.1, KCoul only applies to the pairs nearby

in phase space (the exponential term) and not to other particles accounted for by the

(1− λ) term.

As discussed in the previous chapter, correction is not made for the Coulomb

interaction between each particle and the mean field due to the net charge of the bulk

system formed in the collision. At the energies studied here, this interaction has been

found to be negligible [76, 77].

6.4 Event plane calculations

The azimuthal analysis requires determining the event plane for each event, in-

cluding applying appropriate methods to flatten the event plane distribution [11].

Uncertainty in the event plane reduces the extracted oscillation amplitudes of the

HBT radii. The event plane resolutions must be computed in order to correct for this
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Figure 6.2: The event plane resolutions for Au+Au collisions at
√
sNN = 7.7, 11.5,

19.6, 27, 39, 62.4 and 200 GeV as a function of collision centrality. The resolutions,
computed using the TPC (|η| < 1), enter into both the correction algorithm and the
global fit method.

effect later in the analysis. The nth order event plane angle, ψn, is determined using

charged particles measured in the TPC according to the equation

ψn =
1

n
arctan

(
Qy

Qx

)
+ ∆ψn (6.2)

where the components of the event plane vector are

Qx =
1

N

∑
i

(wi cos(2φi)− 〈Q〉x) (6.3)
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Qy =
1

N

∑
i

(wi sin(2φi)− 〈Q〉y) (6.4)

Here, φi is the angle of the ith track and N is the total number of tracks used to

determine the event plane. The shift correction [11] is given by

∆ψn =
αmax∑
α=1

2

α
(−〈sin(nαψn)〉 cos(nαψn) + 〈cos(nαψn)〉 sin(nαψn)) (6.5)

where α determines the order (nα) that each correction term flattens. This analysis

is performed relative to the second-order (n = 2) event plane.

For 7.7-39 GeV the φ-weighting method [11, 91–93] was used to flatten the event

plane. The inverse, single particle, azimuthal distribution is used to weight each

particle in the event plane determination so that inefficiencies do not affect the event

plane determination. The φ-weight, φwgt,i, is selected from this distribution for the

ith particle using the direction of the particle’s transverse momentum vector, ~pT,i. In

this case wi = φwgt,i · pT,i while the recentering terms 〈Q〉x and 〈Q〉y, as well as the

shift term ∆ψn, are all zero.

For 62.4 and 200 GeV a problematic sector of the TPC was turned off causing

a rather non-uniform azimuthal distribution. In this case, the recentering and shift

methods [11, 92, 94] were required to determine the event plane accurately. In this

case, φ-weights were not applied so wi = pT,i. Here, the average offset in the direction

of the pT weighted flow vector, ~Q, is used to compute 〈Q〉x and 〈Q〉y. After this

correction is applied, a shift method is needed to correct the event plane values for

effects due to other harmonics. The shift term ∆ψn is determined by computing

the correction terms 〈sin(nαψn)〉 and 〈cos(nαψn)〉 from α = 1 up to α = 20 terms,

although generally αmax = 2 would be sufficient for a second order analysis [11].
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Figure 6.3: Examples of the radial oscillations of the HBT radii relative to the reaction
plane from 20-30% central, 19.6 GeV Au+Au collisons for 0.15 < kT < 0.6 GeV/c.
Open circles show the radii before correction for finite-bin-width and event plane
resolution. Open cross symbols demonstrate that correcting these effects increases
the oscillation amplitude. The corrected and uncorrected results are obtained with
the standard fit method (see text) before and after the correction algorithm (Sec. 6.6)
is applied. The points at 0◦ are reused at 180◦ for clarity. The solid band shows the
Fourier decomposition directly extracted using a global fit (Sec. 6.7) to all four angular
bins. The value of λ is consistent for the two methods.
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The event plane resolution, 〈cos[2(ψEP − ψ2)]〉, is also needed as it enters the

correction algorithm described later. The calculation begins by determining two

event planes for two independent subevents which in this analysis correspond to the

η < 0 and η > 0 regions, so called η subevents. These subevent plane estimates are

processed through an iterative procedure to solve for the full event plane resolution

as outlined in [11]. Resolutions are reduced for lower multiplicity (and therefore lower

energy) as well as more round (less anisotropic) cases. The values at each energy that

enter this specific analysis are included in Fig. 6.2.

6.5 Fourier coefficients

In the azimuthal HBT analysis, four correlation functions are constructed, for

pairs directed in four different angular bins centered at Φ = 0◦, 45◦, 90◦, and 135◦

relative to reaction plane. As described in the last chapter, the HBT radii in these

different bins exhibit sinusoidal oscillations relative to the reaction planes. Figure 6.3

shows an example of these oscillations. The Φ dependence of the HBT radii are

described by:

R2
µ (kT ,Φ) = R2

µ,0 (kT ) + 2
∑

n=2,4,6...

R2
µ,n (kT ) cos(nΦ) (µ = o, s, l, ol) (6.6)

and

R2
µ (kT ,Φ) = R2

µ,0 (kT ) + 2
∑

n=2,4,6...

R2
µ,n (kT ) sin(nΦ) (µ = os) (6.7)

where R2
µ,n are the nth-order Fourier coefficients for radius term µ. These coefficients

are computed using

R2
µ,n (kT ) =

{
〈R2

µ (kT ,Φ) cos(nΦ)〉 (µ = o, s, l, ol)

〈R2
µ (kT ,Φ) sin(nΦ)〉 (µ = os)

(6.8)
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The 0th-order Fourier coefficients are expected to be nearly identical to radii extracted

in an azimuthally integrated analysis (which is observed, see results Sec. 8.2). The

2nd-order terms correspond to half the amplitude of the second order oscillations for

a second order, n = 2, analysis.

Once the Fourier coefficients are extracted the eccentricity, defined as

εF =
σ2
y − σ2

x

σ2
y + σ2

x

≈ 2
R2
s,2

R2
s,0

(6.9)

can be simply computed from the Fourier coefficients [87]. The quantities σy and

σx correspond to the widths of the fireball at kinetic freeze-out in the out-of-plane

and in-plane directions, respectively. This definition allows negative eccentricities

if σy < σx which would indicate the system expanded enough to become in-plane

extended. Whether or not that happens is related to the collision dynamics and

equation of state as described in Sec. 2.3. The ratio R2
s,2/R

2
s,0 is used to estimate εF

because Rside is less affected by flow so it carries primarily geometric information [87].

Recall in Section 5.7 that Eq. 5.26 was the only equation relating the HBT radii and

source geometry that had no dependence on temporal or dynamical variables.

6.6 Correction algorithm

The distributions for each of the four angular bins are smeared together partially

due to imperfect event plane resolution. In the limit of zero event plane resolution

the distributions would become indistinguishable and no oscillation of the radii would

be observed. For finite but imperfect event plane resolution, the amplitude of the

observed oscillations are reduced from the true value. Also, due to using pairs from a

range of angles relative to the reaction plane, for instance 90◦± 22.5◦, average values

of the radii in this range are obtained which must nessecarily be slightly lower than
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the true peak amplitude. These effects must be corrected for in order to extract the

true 2nd-order oscillation amplitudes needed to compute εF .

In some previous analyses the radii have been extracted and the oscillation ampli-

tudes then scaled by the event plane resolution to get the corrected 2nd-order Fourier

coefficients. In this analysis, as in [17], a model independent correction algorithm is

applied to compute the corrected numerator, denominator, and Coulomb weighted

denominator histograms for each angular bin. These corrected distributions are then

used in the fits to directly extract the true radii. We briefly summarize this correction

procedure.

The derivation in [88], requires first decomposing the true and experimental distri-

butions in Fourier series. The true distributions are then convolved with a (Gaussian)

distribution of the reconstructed event plane about the true event plane and a function

to account for the finite azimuthal bin width. Finally, each coefficient from the series

for the true distrubtion is equated with the corresponding coefficient from the series

expansion of the experimental distribution. This leads to the following relationship

between coefficients for the true and experimentally observed distributions:

Aexp
α,n (~q) = Aα,n (~q)

sin(n∆/2)

n∆/2
〈cos[n(ψEP − ψ2)]〉. (6.10)

The quantities Aα,n(~q) and Aexp
α,n(~q) are the coefficients for the Fourier series repre-

sentation of the true and experimental distributions respectively. The formula ap-

plies separately to the numerator (A=N), the denominator (A=D) and the Coulomb

weighted mixed event (A=KCoul) distributions. The factors multiplying Aα,n(~q)

come from the convolution of the true series mentioned previously. The quantities

〈cos[n(ψEP − ψ2)]〉 are the reaction plane resolutions described earlier. The symbol

∆ is the width of each angular bin and n is the order of the Fourier coefficient. The

86



experimental coefficients can be computed from the experimentally measured distri-

butions in each angular bin using the standard definition for Fourier coefficients so

that

Aexp
α,n =

{
〈Aexp

n (~q,Φ) cosnΦ〉 (α = c)

〈Aexp
n (~q,Φ) sinnΦ〉 (α = s)

(6.11)

are the coefficients for the cosine (α = c) or sine (α = s) terms in the series expansion.

The true, corrected distributions are computed from the experimental distribu-

tions using

A (~q,Φj) =Aexp (~q,Φj) + 2

nbins∑
n=1

ζn (∆)× [Aexp
c,n (~q) cos(nΦj) + Aexp

s,n (~q) sin(nΦj)]

(6.12)

In this analysis only the 2nd-order event plane (ψ2) is measured and so only the n = 2

terms are required. The correction parameter ζ2(∆) is given by

ζn (∆) =
n∆/2

sin(n∆/2)〈cos[2(ψEP − ψ2)]〉p
− 1. (6.13)

When this factor multiplies a coefficient in Eq. 6.12 it replaces the experimentally

observed coefficient by the true, corrected coefficient. All quantities on the right

hand side of Eq. 6.12 and 6.13 are measured experimentally.

Once the corrected numerator, denominator, and Coulomb weighted mixed-event

distributions are computed for each angular bin, fits are performed to extract the

radii. As in [17], the λ parameter from the four angular bins are averaged (for each

centrality) and set as a constant for all four bins; the 〈λ〉 values are nearly identical to

the non-azimuthal cases. The correlation functions are refit to extract the radii. The

λ-fixing procedure reduces the number of independent fit parameters needed. This

procedure is done under the assumption that λ has no explicit Φ dependence, none

has been observed.
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In any case, the HBT radii extracted from these corrected distributions exhibit the

true, larger oscillation amplitude. This is clearly demonstrated in Figure 6.3. One

deficiency in this approach is that the uncertainties on the corrected distributions are

correlated, leading to an underestimate of the uncertainties for the extracted radii.

A new approach, the “global fit” method, is developed to avoid this and to try to get

more reliable results in cases where the statistics and resolution are very low.

In earlier azimuthal analyses E895 and CERES simply divided the uncorrected os-

cillation amplitudes by the event plane resolution as is done in v2 analyses. Although

the results are rather consistent, it is not the formally correct approach.

To distinguish between the three methods, in the remainder of this paper, fitting

the uncorrected distributions and then scaling by the resolution will be referred to

as the “v2-type” correction method. The process of first applying the correction

algorithm to the distributions before extracting the radii, separately for each angular

bin (with Eq. 6.1), will be referred to as the “standard fit” method.

6.7 Global fit method

A new global method of fitting was developed that avoids correlated errors and

provides more reliable results in cases of low statistics and poor event plane resolution.

The method begins with the same Gaussian parameterization in Eq. 6.1. The Fourier

representation of the radii from Eqs. 6.6 and 6.7 are substituted, keeping only the 0th-

and 2nd-order terms. In this method, the fit parameters are the Fourier coefficients

that describe the oscillations of the radii relative to the event plane, and so the Fourier

coefficients are extracted directly rather than the radii. Using this parameterization,

the theoretical estimate of the numerator is then smeared for event plane resolution
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and finite-binning effects by applying the correction algorithm in reverse, as described

below. In this way, a theoretical estimate of the values expected in each uncorrected

numerator is obtained which can then be compared to the uncorrected numerators

that are measured.

For each bin ~q =(qo,qs,ql), a value of the correlation function, C(~q), is computed.

An estimate for the denominator is obtained from the “true” denominator (i.e., the

denominator for a given Φ bin run through the correction algorithm described in

the last section). The estimate for the true numerator, for each ~q bin, is simply

N(~q) = D(~q)C(~q). This value is then run through the correction algorithm in reverse.

A series similar to Eq. 6.12,

Asmeared (~q,Φj) = Atheory (~q,Φj) + 2

nbins∑
n=1

ζ
′

n (∆)

× [Atheory
c,n (~q) cos(nΦj) + Atheory

s,n (~q) sin(nΦj)]

(6.14)

is used to compute the value expected to appear in the uncorrected numerator for

each (qo,qs,ql) bin and each Φ bin. The quantity Asmeared is the value expected in the

uncorrected numerator, based on the value, Atheory, predicted by the current values

of the fit parameters. All fit parameters (including normalizations) obtained in this

method correspond to the true correlation function even though the fit is applied to

the uncorrected numerators. As in Eq. 6.12, n = 2 terms are used for an analysis

relative to the second order event plane.

A factor similar to Eq. 6.13, from the relationship between true and experimental

values (for n = 2),

ζ
′

n(∆) =
sin(n∆/2)〈cos[2(ψEP − ψ2)]〉p

n∆/2
− 1 (6.15)
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smears the true amplitude according to the resolution and bin-width.

In this way an estimate of the value that should be found in the uncorrected, raw

numerator histogram for each (qo,qs,ql) bin and for each Φ bin is obtained. The fit

then compares this value to the values in the four uncorrected numerator histograms

for all four Φ bins in a single simultaneous “global” fit.

A separate normalization is used for each Φ bin since there will be differences in

the number of tracks, and therefore pairs, in the different bins. A single λ parameter

is used for all four angular bins, as is done in the standard fit method. This method

significantly reduces the number of parameters needed (besides the four normaliza-

tions) to describe the data. In the standard fit method 21 parameters (λ + 5 radii

x 4 Φ bins) are needed. The global fit method requires only 11 parameters (λ + 10

Fourier coefficients).

The standard correction algorithm computes a corrected histogram from all of

the uncorrected histograms. Therefore, the uncertainties in each corrected histogram

depend on the uncertainties in all the uncorrected histograms. While the uncertainties

are independent in the uncorrected histograms, the uncertainties in the “corrected”

histograms are not. However, the fit assumes the uncertainties are independent and,

as a result, underestimates the true uncertainty. The new global fit method, by fitting

directly to the uncorrected numerator histograms, avoids this problem.

A disadvantage of the new algorithm is that the normalizations obtained corre-

spond to the “true” correlation function, Ctrue(~q) = N corr(~q)/Dcorr(~q), but the fit

uses the corrected denominator histogram, Dcorr, and the uncorrected numerator his-

togram, Nuncorr. To compare the fit to the distributions that are actually used in the

fit, C(~q) = Nuncorr(~q)/Dcorr(~q) is projected but the normalizations do not correspond
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exactly. They do put the projections on a common scale however. The 0◦ and 90◦

projections are shifted away from unity at large ~q. Examples of the projections using

the global fit method are shown in Fig. 6.4 for the same centrality and energy as

the fits using the standard fit method, also shown in Fig. 6.4 for comparison. As a

check, if instead one projects N corr(~q)/Dcorr(~q) and Nfit(~q)/Dcorr(~q), where Nfit(~q) is

the unsmeared fit numerator computed from the extracted Fourier coefficients, the

projections look essentially identical to the standard fit method projections for all

four angular bins.

For most centralities and fit parameters, the results agree quite well. However,

the amplitude describing the R2
long oscillation, R2

l,2, is larger when obtained using the

new fit method. The difference in R2
l,2 for the two parameterizations means that the

second order oscillation that best fits the data from all angular bins simultaneously

is not consistent with the Gaussian Rlong values that best describe the regions of

homogeneity in each angular bin separately. The difference may be attributed to a

subtle interdependence of the fit parameters in the standard fit method that constrains

the Rlong values. Also, the new fit method has difficulties in all central 0-5% cases

and in a few 5-10% cases when the statistics become low. For some of the 0-5% cases

the fit could never converge even with high statistics. While the R2
ol,2 values are close

to zero in the standard fit results for all centralities, a large R2
ol,2 suddenly appears

only in this most central bin, only when using this global fit method. This should not

happen because for a symmetric acceptance window around mid-rapidity R2
ol must

average to zero. Additionally, because the different angular bins are most similar in

central events any second order oscillation of R2
ol,2 should decrease in the most central

bin due to symmetry, not appear suddenly. In fact when R2
ol,2 is varied, the χ2 value
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Figure 6.4: Sample fit projections onto the qout (top row), qside (middle row) and qlong

(bottom row) axes for four angular bins relative to the reaction plane. Results from
the standard fit method and the global fit method are shown for direct comparison.
These projections are from results for 10-20% central, 19.6 GeV Au+Au collisions
with 0.15 < kT < 0.6 GeV/c.
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between the fit and the data becomes quite flat for the central data compared to

other centralities allowing R2
ol,2 to take on a wide range of values without constraint.

Additionally, when this happens the oscillations extracted for some, or sometimes all,

of the other parameters (R2
o,2, R2

s,2, R2
l,2) change sign in this central case, even when

statistics are high.

Due to symmetry of the almost round central events, the distributions for dif-

ferent angular bins are quite similar compared to other centralities. The global fit

method extracts oscillations, not radii, from all four bins simultaneously and when

the distributions are similar it seems to have the freedom to find a wider variety of

solutions. The standard fit method, with separate fits in each azimuthal bin, has no

such freedom, but is found to be less reliable when statistics and resolutions are low.

For other centralities the results are rather stable and, the 0th-order coefficients, even

for 0-5% centrality, always remain consistent with the azimuthally integrated results.

The behavior for central data appears to be the result of the relationship between

the fit parameters used in this parameterization, the similar shape of the emission

regions for all the angular bins in the central data, and the very shallow minimum

in χ2 that develops for R2
ol,2 at the same time. There are no other differences in the

global fit algorithm compared to the standard fit method.
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Chapter 7: Event, track, and pair selections and systematic

uncertainty

The various selection criteria and binning of data that are used in the analyses are

described in the first three sections of this chapter which correspond to Section III

B-D in [85]. The last section provides a discussion of systematic uncertainties which

is taken from Section IV E of [85].

7.1 Event selection

Events included in the analysis were selected using the reconstructed vertex posi-

tion. The radial vertex position (VR =
√
V 2
X + V 2

Y ) was required to be less than 2 cm

to reject collisions with the beam pipe. The vertex position along the beam direction,

VZ , was required to be near the center of the detector as summarized in Table 7.1,

with larger ranges at 7.7 and 11.5 GeV to maximize statistics. The number of events

at each energy used in this analysis are also listed in Table 7.1.

The events were binned in different centrality ranges. For the azimuthal HBT

analysis the centrality bins studied were 0-5%, 5-10%, 10-20%, 20-30% and 30-40%.

For the non-azimuthal HBT analysis, additional 40-50%, 50-60%, 60-70% bins were

also studied. Events were mixed only with other events in the same centrality bin

and with relative z vertex positions of less than 5 cm. For the azimuthally sensitive
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√
sNN (GeV) |VZ | (cm) Nevents (106)

7.7 < 70 3.9
11.5 < 50 10.7
19.6 < 30 15.4
27 < 30 30.8
39 < 30 8.8
62.4 < 30 10.1
200 < 30 11.6

Table 7.1: Number of analyzed events and z-vertex range, VZ , at each energy.

analysis, events were also required to have the estimated reaction plane within 22.5◦,

similar to an earlier analysis [17]. Reducing the width of the mixing bins only changes

the relative normalizations in the different angular bins but has no effect on the other

parameters. The study in Appendix A.1 demonstrates this by comparing results using

8, 9, and 12 azimuthal mixing bins.

7.2 Particle selection

Tracks were selected in three rapidity ranges: −1 < y < −0.5 (backward rapidity),

−0.5 < y < 0.5 (mid-rapidity), and 0.5 < y < 1 (forward rapidity). Each track was

required to have hits on more than 15 (out of 45 maximum) of the TPC pad rows to

ensure good tracks. A distance of closest approach requirement, DCA < 3 cm, was

imposed to reduce contribution from non-primary pions.

Particle identification is accomplished by measuring energy loss in the gas, dE/dx,

for each track and comparing to the expected value for each species (i = e±,π±,k±,p,p̄)
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Figure 7.1: The energy loss, dE/dx, demonstrates that particle idendification (and
other particle selection criteria) effectively selects pions (colored contour region) that
are well separated from the kaon, proton, and electron bands (shown in black). The
gaps in the colored region at |p| ≈ 0.2 GeV/c are caused by the cut to eliminate
electrons from the analysis in the region where the electron and pion band overlap.

using the equation

nσi =
1

σi
log

(
dE/dxmeasured

dE/dxexpected,i

)
(7.1)

where σi is the dE/dx resolution of the TPC. Tracks with nσπ < 2 allow identification

of pions for use in the analysis. An additional requirement that nσe, nσk, and nσp > 2

supresses contamination from other particles. Additionally, a transverse momentum

cut, 0.15 < pT < 0.8 GeV/c, further ensures particles come from the region where

the pion band is separated from the kaon band. Any contamination is estimated to

be less than 1.7% even before the nσ cut to reject kaons. Figure 7.1 demonstrates

that these cuts effectively remove non-pions.
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7.3 Pair cuts and binning

7.3.1 Split tracks

Track splitting occurs when a single charged particle track is reconstructed as two

separate tracks that appear to have nearly identical momenta. The relative momenta

of these artificial pairs is very small and therefore extra entries appear in the region

of the correlation function that carries the signal. As described in Sec. 6.1, the

correlation function is the ratio of the relative momentum distribution for particles

in the same event (numerator) to the distribution for particles from mixed events

(denominator) that exhibits a signal peak at low relative momentum. The artificial

pairs caused by track splitting appear only in the numerator, artificially increasing

the peak in the correlation function. A process to remove track splitting effects was

described in [86] where a “splitting level”, SL < 0.6 was required. Analogous studies

show the same cut is effective at removing track splitting in the more recent data sets

so SL < 0.6 is required for all pairs in the current analysis. More discussion of track

splitting studies can be found in Appendix A.2.

7.3.2 Merged tracks

Compared to track splitting, track merging has the opposite effect on the corre-

lation signal, reducing the observed peak at low relative momentum.

Since the tracks that carry the correlation signal have low relative momentum,

they must follow similar trajectories through the detector. Track merging occurs

when two such tracks are reconstructed as a single track. Therefore, the pairs they

would form with each other (and other particles) are missed in the analysis. This

reduces the number of pairs in the numerator in the signal region. No such merging
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effect occurs in the mixed event denominator because the tracks from separate events

were reconstructed independently. Again, in [86] a technique to remove track merging

effects was developed. As discussed in Sec. 4.2, if two tracks have hits on the same

padrow that are too close together they would appear as a single “merged” hit. Two

tracks with such “merged” hits on many of the 45 TPC padrows are more likely

to be reconstructed as single merged track. For each pair of tracks, the fraction of

hits that are close enough so they would appear merged is computed. The same

algorithm can be applied to track pairs from the numerator and denominator. The

allowed fraction of merged hits (FMH) can be reduced until the effect is eliminated.

In [86] it was determined that FMH < 10% reduced track merging effects as much as

possible. While this approach eliminates the potentially large effect of track merging,

it introduces a systematic uncertainty due to the non-Gaussianess of the correlation

function [86]. The azimuthal HBT analysis is more sensitive to the track merging

cut and allows the systematic uncertainty associated with this requirement to be

estimated in Sec. 7.4. Analogous studies to those in [86] lead to the same conclusions

so in the present analyses a requirement that FMH < 10% is imposed to remove

effects of track merging for all energies studied. Additional information related to

investigations of track merging effects can be found in Appendix A.3.

7.3.3 kT cut and pair binning

Similar to previous analyses [17, 86, 95, 96] pairs were required to have aver-

age transverse pair momenta, kT = (|~p1T + ~p2T |)/2, in the range 0.15 < kT < 0.6

GeV/c. For the non-azimuthal HBT analyses four kT bins were used: [0.15,0.25]

GeV/c, [0.25,0.35] GeV/c, [0.35,0.45] GeV/c, [0.45,0.6] GeV/c. This binning allows

98



the presentation of results as a function of mean kT (or mT =
√
k2
T +m2

π) in each

bin. These bins yield mean kT values similar to those in the historical data allowing

direct comparison of certain quantities to previously observed trends.

In earlier azimuthal HBT studies by CERES [16] and STAR [17] the analysis was

performed in similar, narrow kT bins. For an azimuthally differential HBT analysis

the statistics are spread across at least four additional azimuthal bins. At the lowest

energies this did not allow for sufficient statistics. For instance, the 7.7 GeV dataset

has both the fewest number of events and the lowest multiplicity per event in each

centrality bin. Reliable results could not be obtained from data split into both multi-

ple kT and multiple bins relative to the reaction plane. Instead, a single kT -integrated

analysis was performed using all pairs in the combined range 0.15 < kT < 0.6 GeV/c

with 〈kT 〉 ≈ 0.31 GeV/c. The eccentricity at kinetic freeze-out exhibits a systematic

decrease by as much as 0.02 when using a single, wide kT range compared to analyses

when results from several narrow kT bins are averaged. This is simply because the

lowest kT bin appears to give slightly smaller eccentricities. Therefore, when a wide

bin is used the results are biased toward the low kT results due to the much higher

statistics of the low kT pairs. In the earlier analyses, CERES reported a weighted av-

erage of results for different kT bins, while STAR used an average without statistical

weights. In any case, to compare the present results as a function of
√
sNN the same

kT integrated range was used for all energies.

For the azimuthally differential analysis, the pairs were separated into four 45◦

wide azimuthal bins relative to the reaction plane direction using the angle Φ = φpair−

ψ2. The angle of each pair, φpair, is the azimuthal angle of the average pair transverse

momentum vector, ~kT , and ψ2 is the second-order event plane angle defined in the
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Source Rout Rside Rlong εF

Coulomb 4% 3% 4% 0.004
Fit Range 5% 5% 5% 0.002
FMH 7% 3% 3% 0.003
Total 9.5% 6.5% 7% 0.005

Table 7.2: The approximate systematic uncertainty on the HBT radii and freeze-out
eccentricities.

range [0, π]. This allows measurement of the oscillations of parameters necessary to

estimate the freeze-out eccentricity as projected on the transverse plane. A first order

analysis could provide additional information at the lowest energies [8, 80]. However,

significant additional work is needed to obtain first order results due to complications

from relatively low statistics spread across more bins and with much lower first order

(compared to second order) event plane resolutions.

7.4 Systematic uncertainties

The sources of systematic uncertainty have been studied in previous HBT analyses

such as [17, 86, 95, 96]. Similar studies have been used to estimate the systematic un-

certainty due to the Coulomb correction, fit range, and fraction of merged hits (FMH)

cut discussed earlier. Track splitting is effectively eliminated. The estimated uncer-

tainty on the HBT radii and freeze-out eccentricity from each source are summarized

in Table 7.2.

Earlier STAR analyses [17, 86, 95, 96] found, for various collision species (p+p,

Cu+Cu, Au+Au) and data sets that the systematic uncertainty is approximately 10%
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or less for the HBT radii in all centrality and kT bins studied. Analogous studies lead

to the same conclusion for the data sets used in the current analysis.

It should be noted that there is also an inherent uncertainty in the general method

used to extract the eccentricity. The theoretical framework assumes a static, Gaussian

region of homogeneity that corresponds to the entire volume of the collision at kinetic

freeze-out. Flow-induced space-momentum correlations reduce this correspondence

which could affect the reliability of the equations. However, several different model

studies [80, 87] find consistently that the results are still reliable to within 30% even

in the presence of strong flow. This would not affect any conclusions regarding the

shape of the excitation function in regards to whether or not it is monotonic.
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Chapter 8: Results

The azimuthally integrated HBT results are discussed first and compared to his-

torical data from earlier experiments and recent results from ALICE. Later, the az-

imuthally differential analysis is presented for a wide range of beam energies. The

azimuthally differential analysis is also performed in three rapidity bins allowing ex-

traction of the excitation function for the R2
ol parameter and to directly compare the

freeze-out eccentricity in the same forward rapidity window as an earlier measure-

ment by the CERES collaboration. Finally, the excitation function for the freeze-out

eccentricity is discussed along with its implications for the relevant underlying physics

as outlined in Sec. 2.3. The material presented in this chapter is adapted directly

from Section VI of Reference [85], the paper pertaining to the research for this thesis.

8.1 Azimuthally integrated HBT

There is a wealth of historical HBT data demonstrating the systematic behavior

of the HBT radii as a function of beam energy, kT (or mT ), and centrality. The trends

have been established despite the measurements having been performed by various

experiments and with differences in the analysis techniques. In this paper, the results

are presented across a wide range of beam energies, overlapping previously measured

regions and filling in previously unmeasured regions of
√
sNN .
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Figure 8.1: Energy dependence of the HBT parameters for central Au+Au, Pb+Pb,
and Pb+Au collisions at mid-rapidity and 〈kT 〉 ≈ 0.22 GeV/c [97–103]. The text
contains discussion about variations in centrality, kT , and analysis techniques between
experiments. Errors on NA44, NA49, WA98, CERES and ALICE points include
systematic errors. The 39 GeV point includes the approximate systematic uncertainty
(from Table 7.2) typical of the STAR results at all energies. Errors on other results
are statistical only. Forsome experiments the λ value was not specified.
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Figure 8.1 shows the beam energy dependence of the λ parameter, the HBT radii,

and the ratio Rout/Rside for central collisions at low kT . All the STAR results are from

the most central 0-5% and lowest 〈kT 〉 (≈ 0.22 GeV/c) data. The ALICE point is also

from 0-5% central data, but has a slighly larger kT ≈ 0.26 GeV/c. Historical results

from earlier experiments come from a range of central data sets, as narrow as 0-7.2%

to as wide as 0-18% centrality, as well as a range of 〈kT 〉 values, from 0.17 GeV/c to

0.25 GeV/c. The historical data are from π−-π− correlation results in which various

methods of accounting for the Coulomb interaction were employed. The new STAR

results are from combined π−-π− and π+-π+ correlation functions. No significant

difference between the two cases has been observed so the combination simply leads to

higher statistics. Our high-statistics analysis, with identical acceptance for all
√
sNN ,

yields a well-defined smooth excitation function consistent with previous trends.

The λ parameter primarily represents the fraction of correlated pairs entering

the analysis, as described in Sec. 6.2. It decreases relatively rapidly at lower, AGS,

energies while changing rather little from 7.7 to 200 GeV. This suggests that the

fraction of pions in this 〈kT 〉 range from long-lived resonances increases at lower energy

but remains rather constant at higher energies. The Rout parameter similarly shows

little change over a wide range of RHIC energies. It does appear to rise noticably at

the LHC. The values of Rside show a very small increase at the higher RHIC energies

and a more significant increase at the LHC. The values of Rlong, on the other hand,

appear to reach a minimum around 5 GeV, rising significantly at RHIC and the

ALICE point once again rises more rapidly than the trend observed at STAR.

The radius Rside is primarily associated with the spatial extent of the particle

emitting region whereas Rout is also affected by dynamics and is believed to be related
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to the duration of particle emission. The ratio Rout/Rside was predicted to increase

with beam energy by hydrodynamical calculations and might show an enhancement

if the lifetime were to be extended by entrance into a different phase [104, 105].

The previous observation that this quantity shows a quite flat energy dependence is

reproduced with the scatter in data points greatly reduced and the region between

SPS and previous RHIC measurements covered. The trend remains flat up to LHC

energies. The ability of various models to reproduce this trend is discussed in [95].

The value of Rlong has been related to the freeze-out temperature and lifetime of

the system by the relation [87, 106, 107]

Rlong = τ

√
T

mT

K2(mT/T )

K1(mT/T )
(8.1)

where K1(mT/T ) and K2(mT/T ) are modified Bessel functions. The freeze-out tem-

perature, T, is not expected to change much with
√
sNN . Therefore, the rise of Rlong

suggests that the total lifetime, τ , of the system is increasing with energy. At the end

of this section Eq. 8.1 will be used to extract, τ as a function of
√
sNN given certain

assumptions.

Figure 8.2 shows the 〈mT 〉 dependence of the HBT parameters for each energy.

As mentioned earlier, in Sec. 5.4, the decrease in transverse and longitudinal radii

at higher mT are attributed to transverse and longitudinal flow [87, 108] Larger mT

pairs are emitted from smaller emission regions with less correspondence to the size

of the entire fireball. For both Rout and Rside, the different beam energies show nearly

identical trends both in magnitude and slope. For Rlong, the slopes appear to remain

consistent for the different energies but the magnitude, for all centralities, appears

to increase at higher energies. From these observations and considering Figure 8.1
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Figure 8.2: The 〈mT 〉 dependence of Rout, Rside and Rlong for each energy and multiple
centralities. For 7.7 GeV and 11.5 GeV, the results for 60-70% centrality are excluded
due to lack of statistics.
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showed the beam energy dependence for a single kT and centrality bin it is apparent

that similar dependences on
√
sNN exists for all the studied centrality and kT ranges.

The multiplicity dependence of the HBT radii are presented in Fig. 8.3 for two kT

ranges with 〈kT 〉 ≈ 0.22 GeV/c and 〈kT 〉 ≈ 0.39 GeV/c. A few historical points with

similar 〈kT 〉 are shown as well. It was observed in [95] that Rside and Rlong both follow

a common universal trend at 62.4 and 200 GeV independent of the collision species.

ALICE has recently shown p+p collisions exhibit a different multiplicity dependence

with a smaller slope [109, 110]. The difference may be due to the interactions in the

bulk medium formed in heavy ion collisions.

The results from ALICE are at different 〈kT 〉 values. To get a similar 〈kT 〉 ≈ 0.39

GeV/c estimate, the ALICE data points [103] reported for 〈kT 〉 ≈ 0.35 GeV/c and

〈kT 〉 ≈ 0.44 GeV/c are averaged and plotted on Fig. 8.3. There is some ambiguity

in this approach as the different pair statistics at different kT are not accounted for

when averaging this way. The universal trends for Rside and Rlong appear to continue

up to LHC energies. This has already been demonstrated clearly in [103, 109, 110].

In this paper, 〈dNch/dη〉 was estimated in a consistent way for all the STAR

results. This reduces the horizontal scatter that is present in the historical data due

to differences in techniques used to estimate the multiplicity. The quantity dNch/dη is

used as the standard definition of STAR’s percent centrality bins and the mean value is

simply computed using all events that pass event cuts and enter the analysis. However,

it should be noted that this is an uncorrected value of 〈dNch/dη〉 that underestimates

the true value. This allows a qualitative comparison with other experiments. More

precise quantitative comparison of the multiplicity dependence for STAR data to
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results from other experiments should wait for publication of corrected values of

dNch/dη.

An estimate of the volume of the homogeneity regions, V = (2π)3/2R2
sideRlong,

can be computed using the data in Fig. 8.1. These values are plotted in Fig. 8.4

as a function of
√
sNN . The STAR results are all for 0-5% central collisions with

〈kT 〉 ≈ 0.22 GeV/c. Since the values are computed using the data in Fig. 8.1, all

the same variations in centrality ranges and 〈kT 〉 values are present in the volume

estimates too. The historical data suggest a minimum between AGS and SPS energies.

The STAR results show a noticable increase in volume at the higher energies while

the 7.7 and 11.5 GeV points are almost the same, consistent with a minimum in

the vicinity of 7.7 GeV. The ALICE point rises significantly above the trend at lower

energies so the regions of homogeneity are significantly larger in collisions at the LHC.

The CERES collaboration [113] has found that a constant mean free path at

freeze-out,

λF ≈
V

(Nπσππ +NNσπN)
≈ 1fm, (8.2)

leads naturally to a minimum in the energy dependence of the volume that is observed.

The yields of pions and nucleons, Nπ and NN , change with energy. Assuming the cross

sections, σππ and σπN are constant with energy, the denominator in Eq. 8.2 reaches a

minimum. To keep the mean free path at freeze-out constant, the volume also reaches

a minimum. Above 19.6 GeV, the ratio of Nπσππ/NNσπN remains rather constant

and the denominator in Eq. 8.2 increases with energy similar to the volume. Below

11.5 GeV, the NNσπN term becomes the dominant term and it increases at lower

energies as does the volume. At higher energies, this mechanism is consistent with

the nearly universal trend of the volume on 〈dNch/dη〉 and therefore, Rside and Rlong
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0.22 GeV/c [97–103, 112]. The 39 GeV point shows the approximate systematic
uncertainty (from Table 7.2) typical of the STAR results. The PHOBOS points are
offset in

√
sNN for clarity. The text contains some discussion about variations in

centrality, 〈kT 〉, and analysis techniques between different experiments.
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on 〈dNch/dη〉1/3 [95]. It is interesting that the trend for Rside begins to deviate from

this trend slightly for 7.7 and 11.5 GeV in Fig. 8.3, which is the same region where

the system changes from π-N to π-π dominant. Also, the argument above neglects

the influence from less abundant species including kaons, but it has been observed

that strangeness enhancement occurs in this same region of
√
sNN [114]. Multiple

physical changes in the collisions are occuring simultaneously in this region.

Yet another change that occurs in this region is the rapid increase of v2 around

2 to 7 GeV. In the region around 7.7 to 11.5 GeV, the slope of v2

(√
sNN

)
begins to

level off. A possibility is that the deviation of Rside for 7.7 and 11.5 GeV is related

to the onset of flow induced space-momentum correlations. The E802 results at 4.8

and 5.4 GeV in the right column of Fig. 8.3 are qualitatively similar to the STAR

7.7 GeV results for Rside, but considering the STAR 〈dNch/dη〉1/3 values are slightly

underestimated the E802 results probably deviate slightly more relative to the higher

energies than even the 7.7 GeV data. For Rout, on the other hand, the E802 results are

quite significantly larger than the STAR 7.7 GeV points. This could be consistent

with the effects of flow. Transverse flow should reduce the size of the regions of

homogeneity and is expected to affect Rout much more than Rside. This was reflected

already in the larger slope for the 〈mT 〉 dependence in Fig. 8.2. That the deviation

of the multiplicity dependence of Rside from the trends at higher energies is much

smaller than Rout may be an indication of the relative degree to which the transverse

radii are affected by flow. It would be interesting to study these trends at lower

energies with a single detector where many interesting physical changes are occuring

simultaneously.
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An alternative explanation of the minimum observed in the volume measurement

in Fig. 8.3 is provided by Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

calculations. In [115], UrQMD also finds a minimum between AGS and SPS energies

but, in this case, the cause is related to a different type of change in the particle

production mechanism. At the lowest energies pions are produced by resonances,

but as the energy increases more pions are produced by color string fragmentation

(accounting for color degrees of freedom) which freeze-out at an earlier, smaller stage

(thus a smaller volume is measured) [115]. At even higher energies, the large increase

in pion yields cause the volume to increase once more [115]. This explanation suggests

that a change from hadronic to partonic degrees of freedom cause the minimum in

the volume measurement [115]. Allowing a mean field potential to act on these pre-

formed hadrons (the color string fragments) leads UrQMD to predict Rout/Rside values

near the observed values (≈ 1) for the whole energy range from AGS to SPS [116].

Simultaneously, inclusion of the mean field for pre-formed hadrons causes UrQMD

to reproduce the net proton rapidity distribution and slightly improves its prediction

for v2(pT ) at intermediate pT [116].

As one last application of the data, the lifetime of the collisions is extracted in a

study analogous to [103]. We also assume a kinetic freeze-out temperature, T = 0.12

GeV and fit the data in Fig. 8.2 using Eq. 8.1. The results are plotted in Fig. 8.5.

The STAR results are all for 0-5% collisions with 〈kT 〉 ≈ 0.22 GeV/c. Again, there

are some variations in the centrality ranges, as in Fig. 8.1, for the historical data. The

lifetime appears to increase from around 4.5 fm/c at the lowest energies to around

7.5 fm/c at 200 GeV. Again, the ALICE point suggests a much longer lived, system

significantly above the trend observed at lower energies. Consistent with [103], varying
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Figure 8.5: The lifetime, τ , of the system as a function of beam energy for central
Au+Au collisions assuming a temperature of T = 0.12 GeV at kinetic freeze-out.
The yellow band demonstrates the effect on τ of varying the assumed temperature by
±0.02 GeV. Statistical uncertainties from the fits are smaller than the data points.
To guide the eye, the dashed line extrapolates the trend observed at STAR to higher
and lower energy. The text contains some discussion about variations in centrality
and analysis techniques between different experiments.

the temperature assumed in the fits to T = 0.10 and T = 0.14 GeV causes the lifetimes

to increase by 13% and decrease by 10%, respectively, for all energies. As noted in

[103], due to affects from non-zero transverse flow and chemical potential for pions,

the use of Eq. 8.1 may significantly underestimate the actual lifetimes.

8.2 Azimuthally differential HBT

The results of the azimuthally differential analysis are presented in two sets of

seven figures corresponding to the seven energies. The first set, Fig. 8.6 through

Fig. 8.12, compare mid-rapidity results obtained with the standard fit method to
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those obtained with the global fit method. The second set, Fig. 8.13 through Fig. 8.19

compares forward, backward and mid-rapidity results obtained using the global fit

method. The results for the freeze-out eccentricity can be found in the last section of

this chapter. Earlier, Fig. 6.3 presented an example of the second order oscillations

of the HBT radii relative to the event plane for a single energy, centrality, and ra-

pidity. These second order oscillations are represented by 0th- and 2nd-order Fourier

coefficients. Sec. 6.5 described these Fourier coefficients and how they can be used to

compute the freeze-out eccentricity. In Figs. 8.6 through 8.19 the Fourier coefficients

are presented as a function of Npart. Each set of Fourier coefficients for a given Npart

(centrality), rapidity, and energy encodes all the information for oscillations similar

to those in Fig. 6.3.

In each of the figures showing the Fourier coefficients, the 0th-order coefficients are

presented in the middle column, for the squared radii in the out, side and long direc-

tions (R2
o,0, R2

s,0, R2
l,0) and the out-side cross term (R2

os,0). These values are expected

to correspond to radii from the azimuthally integrated analysis. This correspondence

is demonstrated in the first Fourier coefficient figure for each energy which also in-

cludes the azimuthally integrated results (red crosses) for direct comparison. As in

the azimuthally integrated case, the diagonal radii increase with centrality while the

R2
os,0 cross term remains about zero for all centralities. In the right column of these

figures, ratios of 2nd-order to 0th-order coefficients are presented, also for the out, side,

long and out-side parameters. The ratios that are presented have been connected to

the freeze-out geometry, especially for the R2
s,2/R

2
s,0 case. The left column of each of
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the figures contains the parameters for the out-long cross term. The 0th-order val-

ues, R2
ol,0, are non-zero away from mid-rapidity and show interesting dependence on

energy and centrality that will be discussed later.

8.2.1 Comparison of fit methods

The results using the two fit methods are generally consistent for most of the

parameters. For each energy, the first figure compares the Fourier coefficients from

the two fit methods at mid-rapidity. Forward and backward rapidity results are not

included as some of the results become unreliable in a few cases. The reason is

that at the lowest energies statistics limits the reliability, especially for the standard

fit method, and especially for 7.7 GeV which has the fewest events and the lowest

multiplicity per event. The forward and backward rapidity regions have even lower

statistics due to the more narrow range of rapidity, ∆y = 0.5 rather than ∆y =

1. The event plane resolutions are much lower at these energies as well which can

amplify noise in the correlation function when the correction algorithm is applied.

The correction algorithm does not distinguish between a real signal and a statistical

variation. The amplitude is increased in either case. The global fit method was

designed to minimize this problem by only applying the correction algorithm to the

denominator which has an order of magnitude higher statistics than the numerator.

The 0th-order Fourier coefficients are expected to be consistent with the radii in

the azimuthally integrated analysis. Therefore, the 0th-order, squared radii should

increase smoothly with Npart (as in the middle column of Figs. 8.6 through 8.19). For

the 0th-order terms good agreement with the azimuthally integrated results was ob-

served for both the standard and global fit methods, except a few cases at the lowest
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Figure 8.6: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 7.7 GeV with
〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian fits
to each angular bin. Open symbols represent results using a single global fit to all
angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% and 5-10% global fit points have been
excluded.
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Figure 8.7: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 11.5 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. The 0-5% global fit point is excluded.
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Figure 8.8: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 19.6 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% global fit method point is excluded.
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Figure 8.9: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 27 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% global fit method point is excluded.
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Figure 8.10: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 39 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% global fit method point is excluded.
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Figure 8.11: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 62.4 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% global fit method point is excluded.
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Figure 8.12: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at mid-rapidity (−0.5 < y < 0.5), in 200 GeV collisions
with 〈kT 〉 ≈ 0.31 GeV/c. Solid circles are results using separate “standard” Gaussian
fits to each angular bin. Open symbols represent results using a single global fit to
all angular bins to directly extract the Fourier coefficients. Red crosses demonstrate
good agreement between the azimuthally integrated radii and the 0th-order Fourier
coefficients. As described in the text, the 0-5% global fit method point is excluded.
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energies. Especially for 7.7 GeV, with the standard fit method, several points, pri-

marily the most peripheral and more central (lowest statistics and resolution) points,

deviate quite significantly from this trend. In the same cases, the global fit method

remains consistent with the non-azimuthal radii. Projections of the fits show the

standard fit method results do not match well with the data in such cases. In partic-

ular, the 90◦ bin suffers most from low statistics (fewer tracks are directed out of the

reaction plane) which affects both the 0th- and 2nd-order coefficients when each bin

is fit separately. The global fit method results appear to be somewhat more reliable

in these low statistics and low resolution cases.

As noted earlier, there is a difference in the oscillation amplitude for the long

direction, R2
l,2, obtained from the two methods. This is shown clearly in Fig. 6.3 where

the global fit method extracts a larger oscillation amplitude. From the first Fourier

coefficient figure at each energy, the ratio R2
l,2/R

2
l,0 is systematically further below

zero for the global fit method results. This is a systematic difference, independent

of centrality and energy, related to the different parameterizations in the two fit

methods.

Earlier in Sec. 6.7, the global fit method was found to have difficulties fitting the

most central 0-5% data as well as a few 5-10% cases for 7.7 and 11.5 GeV where

the statistics are low. This was attributed to the similarity of the distributions for

all the angular bins in the more central data and the parameterization used in the

global fit method where the dependence of χ2 on the value of R2
ol,2 becomes quite flat

for the central bin. These points have been excluded from the figures as this seems

to be the limit of reliability. Still, in all cases, the fit projections from the global

fit method better match the data, there is better agreement between forward and
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backward as well as mid-rapidity results and, as discussed in Sec. 6.7, the errors are

not underestimated as they are for the standard fit method. Therefore, results using

the global fit method are used later when discussing the freeze-out shape.

8.2.2 Discussion of Fourier components

The trends exhibited by the Fourier coefficients are qualitatively similar for all en-

ergies. The 0th-order coefficients are consistent with the non-azimuthal results. Like

in the non-azimuthal results, the increase of the 0th-order coefficients for more central

data is related to the increasing volume of the homogeneity regions in more central

events. Since the ratios of 2nd- to 0th-order results are related to the freeze-out shape,

the trends are expected to extrapolate toward zero for more central, more round colli-

sions. The right column of the Fourier coefficient figures for each energy demonstrate

that this behavior is observed. For each HBT radius, the ratios of 2nd- to 0th-order

coefficients follow similar trends for all energies, rapidities, and centralities. This

means that the 2nd-order coefficients (half the oscillation amplitudes) have the same

sign in all these cases. Therefore, the data requires that all energies, rapidities, and

centralities must exhibit oscillations of the HBT radii that are qualitatively similar

to those in Fig. 6.3. The Fourier coefficients for all three rapidities are quite similar

in most cases, especially in the R2
s,2/R

2
s,0 values for 10-20% and 20-30% centralities

used later in the excitation function for the freeze-out eccentricity.

One interesting feature occurs in the R2
ol,0 parameter at forward and backward

rapidity. This parameter exhibits both centrality and energy dependence that may

be relevant for constraining future model studies. The centrality dependence is shown

in the upper panels in the left column of Figs. 8.13, 8.14, 8.15, 8.16, 8.17, 8.18, and
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Figure 8.13: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 7.7 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method. As described in the text, the 0-5% and two 5-10% points
have been excluded.
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Figure 8.14: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 11.5 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method. As described in the text, the 0-5% and two 5-10% points
have been excluded.
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Figure 8.15: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 19.6 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method.
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Figure 8.16: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 27 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method.

128



Figure 8.17: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 39 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method.
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Figure 8.18: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 62.4 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method.
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Figure 8.19: Centrality dependence of the Fourier coefficients that describe azimuthal
oscillations of the HBT radii, at backward (−1 < y < −0.5), forward (0.5 < y < 1)
and mid (−0.5 < y < 0.5) rapidity, in 200 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c
using the global fit method.
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8.19. As discussed earlier, this term averages to zero for results centered at mid-

rapidity, but is otherwise non-zero. At the lowest energy, the R2
ol,0 offset is quite large

(Fig. 8.13) and increases in a linear manner with Npart. At higher energies, although

the linear trend with Npart remains, the slope decreases for larger
√
sNN . For the

200 GeV results (Fig. 8.19), the slope and values are quite small. As discussed in

Sec. 6.2, this non-zero cross term corresponds to a tilt in the qout-qlong plane. The

non-zero value of the crossterm means there is a correlation between the relative

momentum of particle pairs in the out and long directions. Two considerations affect

how R2
ol,0 (or any of the radii) are related to physical parameters of interest. One

is the frame in which the correlation function is constructed (fixed center of mass,

LCMS, etc.) [83, 84]. The other involves the assumptions that enter a particular

analytical model of the source distribution (static, longitudinal flow, transverse flow,

boost-invariance, etc.) that is required to relate the extracted fit parameters (radii)

to physical quantities such as freeze-out duration or total lifetime [83, 84].

Assume for the moment that radii are measured in the LCMS frame, as in this

analysis. In models with longitudinal expansion, breaking of boost-invariance results

in non-zero values of the R2
ol,0 cross term away from mid-rapidity [83, 84]. The reason

is that the LCMS and local rest frame of the source only coincide in the boost-invariant

model [84]. This is one example of how changing the model assumptions leads to a

different relationship between the radii (including R2
ol,0) and physical parameters.

Alternatively, if the same analytical model is assumed but the measurement is

performed in different frames, the dependence of the radii on physical parameters

will also change. For instance, in a model with boost-invariant longitudinal expan-

sion, [84] demonstrates that measurement in a fixed frame, the LCMS frame, and a
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generalized Yano-Koonin frame lead to three different relationships between the fit

parameters (radii) and physical quantities. In [83], a similar analytical model leads

to a quite complex dependence of R2
ol,0 on various physical quantities in the center of

mass frame. However, the expression greatly simplifies in the LCMS frame, leaving

R2
ol,0 directly proportional to the freeze-out duration and other parameters.

Fig. 8.20 shows that for each centrality R2
ol,0 decreases smoothly toward zero at

higher energies. It has been suggested [83, 84] that the quantity R2
out−R2

side should be

sensitive to the duration of particle emission, ∆τ , which is why the quantity Rout/Rside

has been studied in the past, as in Fig. 8.1. The R2
ol offset has also been associated

with the duration of freeze-out and other parameters in a functionally different way

[83, 84]. Although it cannot be determined from the data alone, this new data may

allow an estimate of ∆τ (or other quantities) as a function of beam energy, using a

variable that has different dependence on ∆τ than does the more commonly studied

quantity R2
out −R2

side.

One other observation can be made because the R2
ol,0 values in Fig. 8.20 are mea-

sured in the LCMS frame. As mentioned above, non-zero values of this parameter

suggest boost-invariance may be broken. That R2
ol,0 becomes more non-zero at lower

√
sNN may thus reflect how assumption of boost-invariance becomes less valid at

lower energies.

Assume for the moment that radii are measured in the LCMS frame, as in this

analysis. In models with longitudinal expansion, breaking of boost-invariance results

in non-zero values of the R2
ol,0 cross term away from mid-rapidity [83, 84]. The reason

is that the LCMS and local rest frame of the source only coincide in the boost-invariant
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Figure 8.20: Beam energy dependence of theR2
ol,0 cross term for forward and backward

rapidity with 〈kT 〉 ≈ 0.31 GeV/c.

model [84]. This is one example of how changing the model assumptions leads to a

different relationship between the radii (including R2
ol,0) and physical parameters.

Alternatively, if the same analytical model is assumed but the measurement is

performed in different frames the dependence of the radii on physical parameters

will also change. For instance, in a model with boost-invariant longitudinal expan-

sion, [84] demonstrates that measurement in a fixed frame, the LCMS frame, and a

generalized Yano-Koonin frame lead to three different relationships between the fit

parameters (radii) and physical quantities. In [83], a similar analytical model leads

to a quite complex dependence of R2
ol,0 on various physical quantities in the center of

mass frame. However, the expression greatly simplifies in the LCMS frame leaving

R2
ol,0 directly proportional to the freeze-out duration and other parameters.
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Fig. 8.20 shows that for each centrality R2
ol,0 decreases smoothly toward zero at

higher energies. It has been suggested [83, 84] that the quantity R2
out−R2

side should be

sensitive to the duration of particle emission, ∆τ , which is why the quantity Rout/Rside

has been studied in the past, as in Fig. 8.1. The R2
ol offset has also been associated

with the duration of freeze-out and other parameters in a functionally different way

[83, 84]. Although it cannot be determined from the data alone, this new data may

allow an estimate of ∆τ (or other quantities) as a function of beam energy, using a

variable that has different dependence on ∆τ than does the more commonly studied

quantity R2
out −R2

side.

One other observation can be made because the R2
ol,0 values in Fig. 8.20 are mea-

sured in the LCMS frame. As mentioned above, non-zero values of this parameter

suggest boost-invariance may be broken. That R2
ol,0 becomes more non-zero at lower

√
sNN may thus reflect how assumption of boost-invariance becomes less valid at

lower energies.

8.2.3 Discussion of the freeze-out eccentricity

Figure 8.21 shows the eccentricities at kinetic freeze-out, εF , defined in Eq. 6.9 for

all centralities and energies. They are plotted against the initial eccentricity relative

to the participant plane, defined as

εPP =

√
(σ2

y − σ2
x)

2 + 4σ2
xy

σ2
x + σ2

y

. (8.3)

The quanitities σ2
x = {x2}−{x}2 and σ2

y = {y2}−{y}2 gauge the widths of the distri-

butions of participant nucleons in and out of the reaction plane direction, respectively.

The symbol {. . .} denotes averaging over the position of participant nucleons in each
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Figure 8.21: The eccentricity of the collisions at kinetic freeze-out, εF , as a function of
initial eccentricity relative to the participant plane, εPP , at mid-rapidity. All results
are for 〈kT 〉 ≈ 0.31 GeV/c. The line has a slope of one indicating no change in shape.
Points further below the line evolve more to a round shape.
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event for many events. The quantity σxy = {xy} − {x}{y} accounts for event-by-

event fluctuations in the distribution of participant nucleons. The values of εPP on

the horizontal axes of Fig. 8.21 were determined with Monte Carlo Glauber simula-

tions for each energy and centrality as described in [117]. The line has a slope of one

(εF = εPP ) so points further below the line have evolved more toward a round shape

(εF = 0). These results demonstrate that, at all energies and rapidities studied, the

freeze-out shape remains an out-of-plane extended ellipse (εF > 0). In no case does

extended lifetime or stronger flow result in the shape becoming in-plane extended

(εF < 0). However, there is always some evolution toward a more round shape, as

expected, and there tends to be slightly more evolution for the higher energies. The

same observations apply at forward and backward rapidity because of the similar

trends observed for the ratio R2
s,2/R

2
s,0 (= εF/2).

The excitation function for the freeze-out shape is presented in Figure 8.22. The

new STAR results for three rapidities are compared to earlier measurements from

other experiments and to several models. The results use the global fit method and

are for mid-peripheral (10-30%) collisions where the initial anisotropic shape is large

but there is still significant overlap of the nuclei. The larger differences between in-

plane and out-of-plane pressure gradients in these collisions and larger initial spatial

anisotropy could admit more varied results in the change in shape, if that where to

happen at different energies. The new STAR results exhibit a monotonic decrease in

the freeze-out eccentricity with beam energy for all three rapidity regions.

There are some differences in analyses from different experiments such as correc-

tion for event plane resolution, fitting in one kT bin versus averaging several smaller kT

bins, and centrality ranges. These could potentially be important and were studied.
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Figure 8.22: The freeze-out eccentricity dependence on beam energy in mid-central
Au+Au or Pb+Pb collisions for three rapidity regions and with 〈kT 〉 ≈ 0.31 GeV/c.
For clarity, the points for forward and backward rapidity from STAR are offset slightly.
The models are from UrQMD as well as several (2+1)D hydrodynamical models. The
trend is consistent with a monotonic decrease in eccentricity with beam energy.
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The CERES point at 17.3 GeV suggested a possible minimum in the historical data.

The new STAR results at 11.5 and 19.6 GeV at mid-rapidity were significantly higher

suggesting a monotonic decrease in the freeze-out shape. To check that the difference

was not due to the different rapidity windows the STAR analysis was extended to

include the same rapidity region as CERES, 0.5 < |y| < 1. The forward and back-

ward rapidity results remained consistent with the mid-rapidity measurement. The

CERES point for 10-25% centrality is consistent with 0-10% central STAR results at

19.6 GeV and it seems rather unlikely that differences in centrality definitions could

be a cause of the difference. Event, track, and pair selection quantities have rather

little effect on the results. Another difference is the range of kT values included in

the fits. In the CERES and earlier STAR result [17], the azimuthal analysis was done

in narrow kT bins and the εF values averaged. This was problematic at the lowest

energies due to lower statistics when the analysis was additionally differential in kT .

Using a single, wide kT bin biases the results slightly toward smaller εF values, as

discussed in Sec.2.3. Therefore, to be consistent, the same (wide kT bin) method is

used for all the STAR points. The CERES results used a weighted average of results

in narrow kT bins which should be equivalent to using a single, wide kT bin. It seems

unlikely that this is the cause of the discrepency. The “v2-type” correction algorithm

was used in the CERES and E895 cases to correct for the event plane resolution while

in the STAR case the histograms were corrected or the fit function smeared in the

global fit case. The difference in the results is rather tiny for these different methods

and cannot explain the difference.

As discussed in Sec. 7.3.3, non-monotonic behavior in the excitation function

would have strongly suggested interesting changes in the equation of state. The
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observed monotonic decrease excludes the scenario described in reference [8] and is

consistent with increased lifetime and/or pressure gradients at higher energy. The

energy dependence of Rlong from the non-azimuthal analysis, and the lifetimes shown

in Fig. 8.5, suggest also that the system is longer-lived at higher energy. Still, these

results will allow to probe equation of state effects by comparing to various models.

The currently available model predictions for the energy dependence of the freeze-

out eccentricity are also shown in Fig. 8.22. All models predict a monotonic decrease

in the freeze-out shape at higher energies, so all models agree qualitatively with the

data. The older (2+1)D, ideal hydrodynamical models [14], labeled EOS-H, EOS-I,

and EOS-Q, all overpredict the data. As was noted in [118], in comparison to the

historical data, the model with a first order phase transition, EOS-Q, gets close to the

200 GeV point. The predictions of the freeze-out shape are sensitive to the equation

of state used in the hydrodynamic models. This is clear by comparing the curves for

EOS-I (ideal, massless quark gluon gas) and EOS-H (hadronic gas). For EOS-Q, the

slope changes, following EOS-H at low energies but dropping more rapidly at higher

energies. This is attributed to passage through a mixed-phase regime which extends

the lifetime allowing the system to evolve to a more round state at higher energies

[8].

The two more recent (2+1)D predictions, from the VISH2+1 model, get closer to

the data. MC-KLN and MC-GLB correspond to different initial conditions and are

somewhat more realistic than the earlier results as they allow to incorporate viscous

effects. MC-GLB uses a specific shear viscosity of η/s = 0.08 with Glauber initial

conditions [118]. The MC-KLN model has a much larger viscosity η/s = 0.2 and the

initial shape is derived from the initial gluon density distribution in the transverse
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plane (which is converted to an entropy and finally energy density profile) [118].

Both models incorporate an equation of state based on lattice QCD, named s95p-

PCE [119, 120]. Initial parameters in the models were calibrated using measured

multiplicity distributions (and extrapolations to lower energies) and to describe pT -

spectra and v2 measurements for 200 GeV Au+Au collisions at RHIC [118]. The

two cases were found to yield similar lifetimes but in the MC-KLN case the initial

eccentricities are larger (more out-of-plane extended). The MC-KLN model achieves

a less round shape simply because it starts with larger initial eccentricity [118]. The

excitation function for freeze-out eccentricities has the potential to resolve ambiguities

between models with different initial conditions and values of η/s. In particular, the

two sets of initial conditions and η/s yield identical v2, but very different εF . So the

results in Fig. 8.22 provide tighter constraints on these models.

The goal of [118] was to map systematic trends in observables with the two models,

not to explain the data precisely. In fact the applicability of these models is known

to be problematic at lower energies both because they assume boost-invariance which

is broken at lower energy and because the hadronic phase is expected to become

more important at lower energy. To avoid these difficulties requires (3+1)D viscous

hydrodynamics. Nevertheless, the new results are able to match more closely the

experimemental results. Of the hydrodynamical models, MC-GLB is closest to the

data although it still overpredicts the freeze-out eccentricity and the slope appears

too steep. One relevant observation from [118] is that in these models the decrease in

the eccentricity with energy appears to be due mainly to an extended lifetime rather

than larger anistropy of pressure gradients. As discussed earlier, the lifetime extracted

from Rlong values also suggest an increase in the total lifetime. However, the data
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cannot allow one to determine whether the decrease in eccentricity is due solely to

increased lifetime or whether the pressure gradients may also play a significant role.

The prediction of the Boltzmann transport model, UrQMD (v2.3) [121], matches

most closely the freeze-out shape at all energies. UrQMD follows the trajectories and

interactions of all hadronic particles throughout the collision so it does not require

assumptions about how freeze-out occurs. The model is 3D and does not require

boost-invariance and so is equally applicable at all the studied energies. This may be

at least partially, why the predictions from UrQMD more closely match the energy

dependence compared to the hydrodynamic predictions. While it does not explic-

itly contain a deconfined state, it does incorporate color degrees of freedom through

inclusion of the creation of color strings and their subsequent decay back into hadrons.

For the azimuthally integrated results, UrQMD does rather well at predicting the

observed dependence of HBT radii on 〈kT 〉 and centrality [122, 123]. As discussed

earlier, inclusion of a mean field acting between pre-formed hadrons (color string frag-

ments) predicts Rout/Rside ratios similar to the observed values and leads naturally to

a minimum in the volume similar to that which is observed experimentally [115, 116].

Such a repulsive potential between the string fragments would mimic somewhat an

increase in pressure gradients at early stages [116] similar to the hydrodynamics cases

with an equation of state that includes a phase transition. The UrQMD predictions

for the eccentricities at kinetic freeze-out in Fig.8.22 were made with UrQMD in

cascade mode and so do not incorporate this potential between string fragments.

It should be noted that none of the models is perfect and none predict all observ-

ables simultaneously. The UrQMD model, while it matches the freeze-out shapes well,

matches the momentum space observables less well. And the hydrodynamic models,
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while they are able to describe the momentum space pT spectra and v2 results, do

less well at predicting the eccentricity and trends observed in HBT analyses. The

availability of these new experimental results provide an important opportunity to

further constrain models.
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Chapter 9: Conclusions

This chapter summarizes the conclusions from the research presented in this thesis

and are the same as those in Section VII in Reference [85], the paper corresponding

to this thesis.

The results of HBT analyses have been measured using the STAR detector for

Au+Au collisions from 7.7 GeV to 200 GeV. The dependence of the HBT radii on

mT , centrality, and energy have been observed to be similar to earlier measurements

with other experiments. The comparison of results across this wide range of energies

is greatly improved by eliminating differences between detectors, analysis techniques

and binning in centrality and 〈kT 〉 that is present in the historical data. For instance,

the beam energy dependence of the radii generally agree with results from different ex-

periments but show a much smoother trend than the historical data and, additionally,

contribute data in previously unexplored regions of collision energy. The transverse

mass dependence is also consistent with earlier observations and, additionally, allows

one to conclude all kT and centrality bins will exhibit similar trends as a function of

beam energy.

The energy dependence of the volume of the homogeneity regions is consistent

with a constant mean free path at freeze-out as is the very flat energy dependence of

Rout. This scenario also explains the common dependence of Rside and Rlong on the
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cubed-root of the multiplicity that is observed at higher energy. For 7.7 and 11.5 GeV,

Rside appears to deviate slightly from the trend at the higher energies. Two physical

changes that may potentially be related to this are the effects of strangeness enhance-

ment (not included in the argument for a constant mean free path at freeze-out) and

the rapid increase in the strength of v2 that levels off around 7.7 to 11.5 GeV. Both

of these physical changes occur in the vicinity of the minimum. A systematic study

with a single detector at slightly lower energies would be needed to help disentangle

the different effects.

The UrQMD model provides an alternative explanation for the minimum in the

volume measurement in terms of a change from a hadronic to a partonic state. In-

cluding interactions between color string fragments early in the collision, it not only

can explain the minimum in the volume but is also able to find Rout/Rside values close

to one as observed from AGS through RHIC energies and improves the agreement

between UrQMD and other observables at the same time. It is interesting that such

an interaction potential may somewhat mimic an increase in the pressure gradients

which may correlate with the observation that v2 increases rapidly with
√
sNN in this

region also.

The lifetime of the collision evolution was extracted using the 〈mT 〉 dependence of

Rlong. Subject to certain assumptions, the lifetime increases by roughly 1.7 times from

AGS to 200 GeV collisions measured at STAR. The lifetime increases significantly

more rapidly between RHIC and the LHC.

A new global fit method was developed and studied in relation to the standard fit

method. While it has problems primarily in the most central bin, related to differences

in the parameterization, for other centralities it yields more reliable results in cases
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of low statistics and poor event plane resolution. Additionally, it avoids problems

related to correlated errors. This has allowed to get the most reliable results at the

lowest energies studied.

The Fourier coefficients measured away from mid-rapidity allow one to extract

the previously unavailable monotonic decrease of the R2
ol,0 cross term as a function

of beam energy. This observable has been connected to the duration of particle

emission in a way that is different than the more commonly studied quantities R2
out−

R2
side or Rout/Rside. Actually, the dependence of these two observables on physical

quantities, including emission duration or lifetime, depend on specific assumptions

[83, 84]. In particular, each of these two observables tend to relate to the other

quantities differently. Considering the beam energy dependence of R2
ol in conjunction

with the various sets of assumptions explored in [83, 84], for instance, may lead to

new insights, or even constraints on which assumptions are valid.

The azimuthally differential results show that, for all energies, the evolution of

the collision eccentricity leaves the system still out-of-plane extended at freeze-out.

In mid-central (10-30%) collisions, the freeze-out eccentricity shows a monotonic de-

crease with beam energy consistent with expectations of increased flow and/or in-

creased lifetime at higher energies. This is supported by the azimuthally integrated

results which suggest longer lifetimes at higher energies. The results are consis-

tent qualitatively with all model predictions and most consistent quantitatively with

UrQMD. While the hydrodynamic models can match momentum space observables

(pT spectra, v2) well, they do less well at predicting the HBT results. At the same

time, while the UrQMD model does better at predicting the HBT results, like the

freeze-out shape, it does less well at predicting the momentum space observables. The
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freeze-out eccentricity excitation function provides new, additional information that

will help to constrain future model investigations.
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Appendix A: Selected studies

A.1 Azimuthal Mixing Bin Width

In the azimuthally differential analysis mixed events are formed using events with

similar z vertex, multiplicity, and reaction plane angle. The number of reaction plane

mixing bins varies somewhat compared to earlier studies. The earlier STAR analysis

used 9 bins (20◦ wide), the CERES analysis used 12 bins (15◦ wide), and the current

analysis used 8 bins (22.5◦ wide). To check that this does not affect the results, the

analysis was redone with 9 and 12 bins using 200 GeV data taken in 2010.

Figure A.1 shows the effect of varying the number of mixing bins on the normal-

izations for each angular bin. With wider mixing bins the normalizations show a

larger variation. This is related to the fact that more particles and therefore pairs

point in the reaction plane direction (around 0◦) than point out of the reaction plane

(around 90◦). With narrower bins the event planes are more aligned so there are more

mixed pairs that would enter the denominator of the correlation function constructed

around 0◦ and fewer would enter the denominator for the 90◦ case. Consider also the

limit of one 180◦ wide mixing bin. All numerators would be divided by the same de-

nominator and a variation in the normalizations must appear. In this case, since the

numerator at 0◦ has more entries than the numerator at 90◦ the ratio will be smaller
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Figure A.1: Variation of the normalization with azimuthal angular bin for Au+Au
collisions at mid-rapidity (−0.5 < y < 0.5) for Au+Au collisions at

√
sNN = 200

GeV.

for 90◦. To normalize the correlation function around 90◦ must require dividing by a

smaller value. Therefore, the normalization in Figure A.1 exhibits a minimum at 90◦

that is deeper as the width of the mixing bins increases.

In Figure A.2 the Fourier coefficients are compared for various numbers of mixing

bins. There appears to be no effect on the Fourier coefficients. This verifies that

differences in the number of mixing bins cannot account for the difference between

STAR results at 19.6 GeV and the CERES results at 17.3 GeV.
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Figure A.2: Centrality dependence of the Fourier coefficients with 8, 9, and 12 mixing
bins corresponding to 22.5◦, 20◦, and 15◦ widths, respectively. These results are for
Au+Au collisions at mid-rapidity (−0.5 < y > 0.5) at

√
sNN = 200 GeV taken in

2010.
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A.2 Track splitting

In earlier analyses track splitting was found to influence the results and appro-

priate cuts were identified that removed such effects. Track splitting results in false

pairs at low relative momentum that enter the low |~q| bins in the correlation function.

A splitting level (SL), outlined in [66, 67, 86], is used to identify track pairs that are

likely split tracks and these are removed from the analysis. In both [66] and [67] the

requirement that −0.5 < SL < 0.6 was determined to remove track splitting effects.

The same cut has been used in various STAR analyses [17, 86, 95, 96, 124].

Similar studies were performed with more recent data sets. A preliminary study

using 11.5 GeV data showed the same behavior as in the earlier analyses, although

the effect of split tracks appeared to be slightly smaller. The shape of the correlation

function was similar to Figure A.3 (which is from 200 GeV data) except a peak

developed at low Qinv as the splitting level was increased near SL < 1. The same

cut −0.5 < SL < 0.6 still effectively removed splitting effects although the amount

of track splitting may have been slightly smaller than the earlier studies. In that

preliminary study tracks were required to have fewer hits, Nhits < 10, than in the

final analysis, Nhits > 15. However, in that study there was a problem with the

particle identification that allowed some contamination. Therefore, the results are

not shown here even though it is interesting to mention to contrast with a more

recent study.

The same study was repeated later using 200 GeV data taken in 2010 but requiring

Nhits > 15. As can be seen in Figure A.3 there is no significant effect from removing

the splitting level cut. This is likely related to the change in Nhits. Split tracks tend to

have rather low Nhits and the Nhits distribution reaches a minimum around Nhits ≈ 15.
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Figure A.3: The effect of varying the splitting level is very small in this example
from 200 GeV data taken in 2010. The fraction of merged hits requirement was
FMH < 0.1 and the number of hits requirement for tracks was Nhits > 15. With
FMH < 0.01 and FMH < 1, there is also negligible variation with splitting level.
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Figure A.4: Dependence of the Fourier coefficients on the fraction of merged hits
(FMH) requirement. These results are for Au+Au collisions at

√
sNN=19.6 GeV at

backward rapidity (−1.0 < y < −0.5). The correction for finite bin width and reaction
plane resolution have not been applied in this figure. These particular results are for
a wide 0.15 < kT < 0.6 range.
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It appears that requiring Nhits > 15 may already remove split tracks. Even if it had

no effect, to be the safe, the same requirement on splitting level, −0.5 < SL < 0.6,

was still applied in all the results in this thesis.

A.3 Fraction of merged hits

The effects of track merging tend to reduce the correlation function for small

values of ~q because merged tracks must have similar trajectories, and therefore low

relative momenta. The pairs that these merged tracks would form with each other

and with other particles are missed in the numerator. The consequence is a change in

the observed radii. Studies presented in [66, 86] and in preparation for the paper [17]

found the HBT radii varied as a function of the fraction of merged hits (FMH).

Similar studies were performed in more recent data sets. An example of the results is

shown in Figure A.4. Similar deviation of the R2
os term in all the more recent studies

compared to the earlier study suggest that track merging is independent of the energy

and year that the data was taken. Similar values of the corresponding uncertainties

in the radii are obtained consistent with the earlier study as listed in Table 7.2. As

in other recent STAR analyses [17, 86, 95, 96] the same requirement, FMH < 0.1,

was applied. As noted in [17], Rout is most affected by track merging which is clear

from the middle column of Figure A.4.
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Appendix B: Non-Gaussian effects on azimuthal HBT

analyses

The discussion in this appendix is the same the appendix in Reference [85], the

paper corresponding to this thesis.

In azimuthally integrated HBT analyses, the crossterms (Ros, Rol, Rsl) vanish

at mid-rapidity. In this case, the sign of the components of the relative momentum

vector, ~q, are arbitrary. The three dimensional ~q-space may be folded, so that qlong

and qside are always positive, for instance, to increase statistics in each (qout,qside,qlong)

bin. In azimuthally differential analyses, however, the relative signs of components

are important in order to extract non-zero crossterms [67, 86]. At mid-rapidity, the

relative sign of qout and qside must be maintained to extract values of R2
os. Away

from mid-rapidity, the R2
ol crossterm is also non-zero and qlong must be allowed to

have both positive or negative values. This way the relative sign of qout and qlong is

maintained and the corresponding crossterm can be extracted.

If the “q-folding” procedure is performed and the crossterms are included as fit

parameters, the fit parameters become strongly correlated and the values of the ex-

tracted radii change. The size of this effect varies randomly from one azimuthal bin

to the next, causing large variations in the extracted oscillations of the radii. This

behavior is related to the non-Gaussianess of the correlation function. Due to the
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necessity of using finite bins in kT and centrality, which are described by a range of

radii, the radii extracted from these correlation functions are some average value. If

too much q-folding is performed, the covariance of fit parameters that appears allows

deviations from the average values and the results become unreliable.

This is an important consideration for any HBT analysis performed away from

mid-rapidity, or relative to the first order reaction plane, where measurement of

crossterms is important. In this analysis, no folding of ~q-space is performed and

so any possible effects of this phenomena are eliminated.

156



Bibliography

[1] N. Cabibbo and G. Parisi, Phys. Lett. B 59, 67 (1975).

[2] E. Shuryak, Phys. Lett. B 78, 150 (1975).

[3] J. Adams et al. (STAR), Nucl. Phys. A 757, 102 (2005).

[4] K. Adcox et al. (PHENIX), Nucl. Phys. A 757, 184 (2005).

[5] B. B. Back et al. (PHOBOS), Nucl. Phys. A 757, 28 (2005).

[6] I. Arsene et al. (BRAHMS), Nucl. Phys. A 757, 1 (2005).

[7] M. M. Agarwal et al. (STAR) (2010), arXiv:1007.2613.

[8] M. A. Lisa, E. Frodermann, G. Graef, M. Mitrovski, E. Mount, H. Petersen,

and M. Bleicher, New J. Phys. 13 (2011).

[9] File: Standard Model of Elementary Particles.png, 2013. Used un-

der the Creative Commons Attribution 3.0 Unported license.

http://creativecommons.org/licenses/by/3.0/.

[10] A. Enokizomo, Ph.D. thesis, Hiroshima University (2004).

[11] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

[12] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).

157



[13] S. Shi (STAR Collaboration), Event anisotropy v2 in Au+Au collisions at

√
sNN=7.7-62.4 GeV with STAR (2012), presentation at Quark Matter 2012.

[14] P. F. Kolb and U. W. Heinz (2003), arXiv:nucl-th/0305084.

[15] M. A. Lisa et al. (E895), Phys. Lett. B 496, 1 (2000).

[16] D. Adamova et al. (CERES), Phys. Rev. C 78, 064901 (2008).

[17] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93, 012301 (2004).

[18] R. Vogt, Ultrarelativistic Heavy-Ion Collisions (Elsevier, 2007).

[19] B. Back, M. Baker, D. Barton, R. Betts, M. Ballintijn, et al., Phys. Rev. Lett.

91, 052303 (2003).

[20] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer, Rev. Mod. Phys. 80,

1455 (2008).

[21] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[22] P. B. Demorest et al., Nature 467, 1081 (2010).

[23] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, L. I.

Unger, and A. Vaccarino, Phys. Rev. Lett. 65, 2491 (1990).

[24] Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, Nature 443, 675 (2006).

[25] S. Borsanyi et al. (Wuppertal-Budapest Collaboration), JHEP 1009, 073

(2010).

[26] M. Cheng (HotQCD Collaboration), PoS LAT2009, 175 (2009).

158



[27] A. Masayuki and Y. Koichi, Nucl. Phys. A 504, 668 (1989).

[28] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and G. Pettini, Phys. Rev.

D 41, 1610 (1990).

[29] A. Barducci, R. Casalbuoni, S. D. Curtis, R. Gatto, and G. Pettini, Phys. Lett.

B 231, 463 (1989).

[30] A. Barducci, R. Casalbuoni, G. Pettini, and R. Gatto, Phys. Rev. D 49, 426

(1994).

[31] J. Berges and K. Rajagopal, Nucl. Phys. B 538, 215 (1999).

[32] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov, and J. J. M.

Verbaarschot, Phys. Rev. D 58, 096007 (1998).
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