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Abstract

The production mechanism of quarkonium is still an important topic to investigate since
it evolves with both perturbative and non-perturbative processes. Moreover, quarkonium
production from Color Singlet Model (CSM) and Color Octet Mechanism (COM) should
result in different jet activity (the number of jets per event) due to different number of emitted
hard partons, so it is worthy to perform the study associated with jets to differentiate different

production mechanisms of quarkonium.

In this analysis, we studied the production cross section of .J /1) via dimuon decay chan-
nel with jet activity by using the data of p+p collisions at /s =200 GeV collected by the STAR
experiment in 2015 and compared the results using the non-relativistic QCD (NRQCD) for-
malism which implemented by the PYTHIA 8 package.

Keywords: STAR, quarkonium, J /v, jet activity
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Chapter 1  Introduction

Although physicists have worked on physics of elementary particles for many decades
and the Standard Model of particle physics (SM) seems to be a successful theory to describe
fundamental interactions and particles. There are still many questions that cannot be an-
swered by SM. For example, why is the number of antimatter much less than the number of
matter in nature? What are dark matter and dark energy? Are there more than three gener-
ations of quarks and leptons? To answer these questions, we need many physicists to keep

working on this exciting and challenging field.

One of these mysteries is the production of quarkonium in hadron-hadron collisions. A
quarkonium such as J/1 is predicted to be produced transversely polarized which is not ob-
served in experimental data [17]. This indicates that the detailed parton dynamics responsible
for the production of heavy quark bound states is yet to be fully understood. To investigate
the production mechanism of J/¢/ in hadron-hadron collisions, some physicists are focusing
on the relation between .J/1) and jet, which is a set of hadrons produced by hadronization of

quarks and gluons in high energy experiment.

In this study, we use the data collected by the Solenoid Tracker at RHIC (STAR) experi-
ment, which is one of high energy nuclear experiments at the Relativistic Heavy Ion Collider
(RHIC), to investigate the production cross section of .J /1 as a function of jet activity. The
jet activity is definded as the number of jets in an events. In the following chapters, the theo-
retical review will be presented first in Chapter 2, then the STAR detector and its subsystems
that used in this study will be introduced in Chapter 3. In Chapter 4, the data sets for this
study will be shown, then the details of this analysis will be presented in Chapter 5. The
systematic uncertainties and the final result with conclusions will be shown in Chapter 6 and

Chapter 7, respectivily.



Chapter 2  Theoretical overview

2.1 The Standard Model of Particle Physics

Physicists have investigated the building blocks of our universe over the past few decades.
Nowadays the Standard Model of particle physics (SM) is the most succesful theory that dis-
cribes the fundamental interactions and particles which make up our world. Basicly, there

are two types of fundamental particles, bosons and fermions.

Bosons are those particles with integer spin, following Bose-Einstein statictics, and re-
sponsible for exchanging basic interactions. In the SM, currently we have found five different
kinds of bosons: photons are the mediator of the electromagnetic force between charged par-
ticles; W and Z° bosons carry the weak interaction and dominate in the radioactive decay
of atoms; gluons carry the strong interaction and “’glue” protrons and neutrons together to
form the atomic neuclei. These kinds of bosons mentioned above are spin-1 particles and
are called ”gauge bosons” because they can be described by the gauge theory, in which the
electromagnetic, weak and strong interaction are invariant under U (1), SU(2), and SU(3)
gauge transformation. The other boson is the Higgs boson, which is a spin-0 particle and

gives particles their mass by the Higgs mechanism.

Fermions are the particles with half-integer spin. They follow Fermi-Dirac statistics and
comprise matters in our universe. There are two categories of fermions, quarks and leptons,
and each category has three generations. Quarks have a property called ”color charge” and
this is the reason that they can interact with gluons and experience the strong interaction.
Because of a phenomenon called color confinement, which demonstrate that color-charged
particles, such as quarks and gluons, cannot be isolated, and only colorless particles can be
observed. On the other hand, leptons lack color charges, so they do not experience the strong
interaction. There are three kinds of charged leptons, such as electron, muon, and tau, which
can interact with charged particles through the electromagnetic force. Their corresponding
neutral leptons, called neutrinos, interact with material very rarely since they only experi-

ence the weak interaction. A summary of these elementary particles in the SM is shown in



Fig. 2.1 [1].
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Figure 2.1: A summary of fundamental particles in the SM [1].
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2.2 Quarkonium and the J /1) meson

A quarkonium is a meson that consist of a quark and its antiquark. As a result, a quarko-
nium must be flavorless and neutral-charged. A quarkonium that made up of a charm and an
anticharm quark is called a charmonium, and Fig 2.2 shows its family particles [2]. One of
the most famous charmonia is the .J /¢ meson, which has a mass of 3.096 GeV' /c? and was
discovered in 1974 by Professor Samuel C. C. Ting by the Alternating Gradient Synchrotron
(AGS) at Brookhaven National Laboratory (BNL) [18] and Professor Burton Richter by the
Stanford Positron Electron Accelerating Ring (SPEAR) at Standford Linear Accelerator Cen-
ter (SLAC) [19]. This important discovery led to the Nobel Prize of its discoverers since it

was the first time that scientists evidenced the excistence of charm quark.

Currently, there are many popular models to discribe the production of final state quarko-
nium, for example, Color Singlet Model (CSM) [20] discribes the production of the final state
with the same quantum number as initial state as shown in Fig. 2.3; Color Octet Mechanism
(COM) [21] demonstrates that a final state quarkomium can be evolved through the radia-
tion of soft gluons as shown in Fig. 2.3; Improved Color Evaporation Model (ICEM) [22] is
similar to COM and can provide the polarization information. However, we still don’t fully
understand the production mechanism of J /1, for example, the non-relativistic Quantum

Chromodynamics (NRQCD) formalism can discribe the exprimental measurement of pro-



duction cross section of J /4 in different kinematic ranges as shown in Fig. 2.4 [4], however
it also predicts a large polarization of .J /¢) which was not observed in expriments as shown
in Fig. 2.5 [5]. This indicates that further studies are needed for more constraints of theories

to discribe the .J /1) production mechanism.
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Figure 2.2: A summary of the charmonium family [2].
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Figure 2.3: A scheme of the CSM (left) and COM (right) [3].
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2.3 J/1 production associated with jet

When high energy particles carrying color charges, such as quarks and gluons, produced
in high energy collisions, they are not allowed to be exist individually because of the color
confinement in QCD. As a result, they will undergo a process called ”hadronization”, in
which quark and antiquarks are created from the energy of their color field and finally com-
bined into colorless hadrons. This process is shown in Fig. 2.6 [6]. These sprays of hadrons

will travel together as almost the same direction of the original quarks or gluons and form a
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very common object in high energy collisions, called “jets”. Therefore, physicists can mea-
sure these jets to have a understanding of the properties such as spin of their original quarks

and gluons.

Furthermore, we can also use jets to investigate the production mechanism of quarko-
nia in high energy collisions, for example, the LHCb collaboration published a study of
J /1 in jet in the forward region (2.5 < n’/¥ <4) in proton-proton collisions at a center-of-
mass energy of 13 TeV. The observable they used is the fragmentation function, Z(.J /) =
pr(J /) /pr(jet), to see if J/1 mesons are produced isolated. Their result for prompt
J /¢ [7] is shown in Fig. 2.7 and compared with leading-order NRQCD as implemented
in PYTHIA 8. Recently, there is also a preliminary result of the same study from the STAR
collaboration by using the inclusive .J /¢ in mid-rapidity (|n”/¥| < 1) at a center-of-mass en-
ergy of 500 GeV in p+p collisions and compared with PYTHIA 8 prediction as shown in
Fig. 2.8 [8]. Both of their results show very different distribution compared with theoriti-
cal predictions. The CMS collaboration also published a similar result for a more detailed
study of J /1 contained in jets in 2020 [9]. They measured the differential distributions of

the probability to have a prompt .J /1) contained in a jet as a function of jet energy in different
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Z ranges. Their results are consistent with NRQCD treatment of fragmentation jet function
(FJF) approch as shown in Fig. 2.9, therefore revealed a new way to test predictions for the
production of prompt J1). The results mentioned above imply that there are still benefits of
studying J /1 associated with jet production for a better understanding of ./ /1) and quarkonia

production.

Additionally, since the leading-pr contributions to direct .J /1) and v production in the
CSM are associated with the emission of 3 hard partons, the jet multiplicity should be larger
for the contributions from CSM than from COM [23]. We can look at the jet multiplicity
associated with quarkonium production as a new variable to distinguish different production

mechanism of quarkonium.
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Figure 2.6: A scheme of the hadronization process [6].
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Chapter 3  Experimental apparatus

3.1 Relativistic Heavy Ion Collider (RHIC)

Relativistic Heavy Ion Collider (RHIC), located at Brookhaven National Laboratory
(BNL) in New York, is one of important particle colliders in the world. RHIC is able to
accelerate and collide particles with the highest center-of-mass energy of 200 GeV for heavy
ions and 510 GeV for protons. It is also the only one that is capable to collide spin-polarized

protons.

The stucture of RHIC complex is shown in Fig. 3.1 [10], which contains several sub-
systems for various function. The linear accelerator (LINAC) and Electron Beam lon Source
(EBIS) are the sources of protons and various kinds of ions, respectively. Those particle
beams will be injected and accelerated in the Booster Synchrotron and Alternating Gradient
Synchrotron (AGS), then transfered into RHIC through AGS-to-RHIC (AtR). At the end of
AtR, a switching magnet is responsible for sending them into clockwise and conter-clockwise

RHIC rings, in witch two beams will be collided at six intersection regions (IR).

3.2 The Solenoid Tracker At RHIC

The Solenoid Tracker at RHIC (STAR) is one of the major particle detectors for high
energy physics at RHIC. It has a coverage with full azimuthal angle (0 < ¢ < 27) and in
middle pseudorapidity (1), -1 <7 < 1, where n is definded as = — In [tan(%)] and 6 is the

angle with respect to particle beam line.

The STAR detector contains various subsystems, including Vertex Position Detector
(VPD), Time Projection Chamber (TPC), Time of Flight (ToF), Barrel Electromagnetic Calorime-
ter (BEMC), magnets system, Muon Telescope Detector (MTD), Event Plane Detector (EPD)

and so on. The structure of the STAR detector is shown in Fig. 3.2.
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3.3 Time Projection Chamber, TPC

TPC is a cylindrical tracking system at the heart of STAR, filled with the P10 gas which
is composed of 10% methane and 90% argon to measure the trajectories and momenta of
charged particles. Fig. 3.3 shows the structure of TPC. The length and outer diameter of TPC
are 4.2 m and 4 m, respectivily, equivalent to an acceptance of full azimuthal angle (0 < ¢
< 27) and middle pseudorapidity (-1 <n < 1) [11]. TPC also provides us another important
information: the ionization energy losses of charged particles (dE/dx), which can be used to
identify different charged particle species. Fig. 3.4 shows the energy loss as a function of
momentum for different particles, compared with the Bichsel model predictions [12]. The
particle identification by using dE/dx works very well in the low momentum region. How-
ever, due to less mass dependence of the dE/dx at high momentum, it is hard to seperate

particles with velocities larger than 70% of the speed of light [11].
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Figure 3.3: The Time Projection Chamber of STAR [11].
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3.4 Magnet System

The magnet system of STAR is cylindrical in geometry with a length of 6.85 m, an inner
diameter of 5.27 m, and an outer diameter of 7.32 m. It is built to provide a uniform mag-
netic field in the range of 0.25 to 0.5 Tesla parallel to the beamline to bend the trajectories
of charged particles. This provides us the capability to measure the momenta of particles
with TPC. Furthermore, trajectories of particles with different charge will be bent in dif-
ferent directions, so the magnet system also help us to distinguish particles with different

charges [24].

3.5 Time-of-Flight, TOF

The TOF system is based on the Multi-gap Resistive Plate Chamber (MRPC) technology
with an acceptance of full azimuthal angle (0 < ¢ < 27) and middle pseudorapidity (-1 <7 <
1). It consists of 3840 MRPC modules, in which 95% F134a (C'H, F'C'F3) and 5% isobutane
(HC(CHs)s) are used as the working electronegative gas. Figure 3.5 shows the long-side
view of a MRPC module of TOF [13].
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Combining with the path length of trajectories measured by TPC and the start time from
VPD, TOF can provide us the velocities of charged particles, which can be used to calculate
1/3 as another variable for particle identification. The 1//3 is definded as \/(“%)? + 1, where
m 1s the mass of particle, P is the momentum, and c is the speed of light. Figure 3.6 shows
the particle identification with 1/4. Itis clear that different particle species are well seperated

for momenta up to 3 GeV/c [13].
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Figure 3.5: Long-side view of a MRPC module of TOF [13].

3.6 Muon Telescope Detector, MTD

MTD was fully installed in 2014 with the purpose of muon identification and triggering
the events. It has a coverage of 45% in the azimuthal (¢) direction due to the gaps and middle
pseudorapidity (-0.5 <7 < 0.5) as shown in Fig. 3.7. Same as the TOF system, the MRPC
technology is used with long readout strips (long-MRPC) for the 150 MTD modules, and the
cutregas is the mixture of 95% F134a (C HyF'C'F) and 5% isobutane (HC(C' H3)s). These
modules are installed on the 30 backlegs of magnet system with 5 modules on each backleg
as shown in Fig. 3.8. The role of the magnet backlegs is to absorb background hadrons for

increasing the purity of muons [14].
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Figure 3.7: The schematics of Muon Telescope Detector [14].
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Chapter 4  Analysis setup

In this analysis, we used the proton-proton collisions at 200 GeV data collected in 2015
by STAR. To study .J /¢ with dimuon decay channel, we use those events fired dimuon trig-
ger, which required at least 2 hits on the MTD modules in each event. Furthermore, due to
some issues of the detector, there are some bad runs or events with unreasonable data that
must be removed first to have a good quality of data for our analysis. This data quality assur-
ance (QA) for bad run rejection have been studied by the BNL group for Run 15 data [25].
After this bad run rejection, there are about 241 million dimuon triggered events with the

corresponding integrated luminosity L;,; = 122.1 pb™1.

4.1 Vertex and track quality selections

In this analysis, we required two selections on vertex for the z position of primary vertex
measured by TPC (TPC V). The first one is the absolute value of TPC V, should be less than
100 centimeters. Another one is that the distance between TPC V, and the z position of vertex
measured by the vertex position detector (VPD V) should be less than 6 centimeters to reduce
in-bunch pileups. In terms of tracks, we used those matched to the primary vertices, so called
primary tracks, with their transverse momenta (pr) no less than 0.2 GeV/c and pseudorapidity
(n) between -1 and 1 due to the acceptance of TPC. To ensure good quality of these tracks,
we required further selections: each track should be reconstructed by at least 15 TPC clusters
to have a good resolution of momentum measurement; to have good resolution of dE/dx
measurement, the number of TPC clusters for determination of the energy lose of each track
should be larger than 10; the ratio of TPC clusters for reconstructing each track to that of
maximum value should be no less than 0.52 to reject split tracks. We also apply selections
on the distance of the closest approch (DCA) to the primary vertex. This DCA of each track
should be less than 1.5 centimeter further rejection of tracks from pileups. These selection

criteria mentioned above are summarized in Table 4.1.
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Table 4.1: A summary of vertex and track quality selections.

ITPC V| < 100 cm
ITPCV, —=VPD V,| < 6 cm
Primary tracks
pr > 0.2 GeV/e
Il <1
NHitsFit > 15
NHitsDedx > 10
NHitsFit/NHitsMax > 0.52
DCA <1.5cm

4.2 Muon candidates

In order to reconstruct .J /1) via dimuon decay channel, we need to apply further selec-
tions on the tracks; otherwise, there is no any clear signal of .J /¢ due to the large background
from hadrons. Because the MTD is responsible for our muon identification, muon candi-
dates are required to have pr > 1.3 GeV/c and || < 0.5 due to the acceptance of MTD.
Furthermore, each of these tracks sould be matched to at least one hit on the MTD module.
Because J /v are neutral particles, we pair two muon candidates with opposite charge sigh
for J /1 reconstruction. The reconstructed invariant mass spectrum of dimuon pair is shown
in Fig. 4.1. We fit this mass distribution by a Gaussian as signal function and a second order
polynomial as background function. A clear signal of 6517 .J /1 can be seen with a signal to

backfround ratio of 63.74.

4.2.1 Likelihood ratio method

In order to increase the significance of J/1 and reduce the uncertainties of fitting for
signal extraction, we use the likelihood ratio method as an advanced selection for muon can-
didates. This method has been used in several .JJ /1) — pt ™ analyses in STAR [25][26] [27].

In this method, we use five variables measured by TPC and MTD, which are defined as fol-
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Figure 4.1: Invariant mass spectrum of dimuon pairs with MTD acceptance and MTD hit selections

on the muon candidates, fitted by a Gaussian and a second order polynomial.

lowing:

o AyXxq/oayxq: Ayxgq is the distance perpendicular to the z axis (beam axis)
between extrapolated position and the hit on MTD of a track and multiplied by its charge
q to eliminated the charge dependence. Because of the large pr dependence as shown in
Fig. 4.2, we fit these distributions with Gaussian function to evaluate the resolution oayxq
as a function of track pr, which is shown in Fig. 4.3. To remove such p; dependence, the

Ayxq of each track is divided by the corresponding pr resolution.

e Az/oa,: Az is the distance in the z direction between extrapolated pisition and
the hit on MTD of a track. The resolution o, as a function of track pr as shown in Fig. 4.3
is evaluated by fitting the Az distributions in different p; ranges with Gaussian functions as
shown in Fig 4.4. Then, the Az of each track is divided by the corresponding pr resolution

to remove the large pr dependence.
e AToF: the differences between the time-of-flight measured by ToF and MTD.

e no,: the normalized differences between experimental and theoretical value of
energy loss (dE/dx) of pion as defined in Eq. 4.1, in which the denominator represents the

resolution of dE/dx from experimental measurement.

18



e DCA: the distance of the closest approch (DCA) is the smallest distance of a track

to the primary vertex.
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Figure 4.2: Ayxq distribution in different muon pr ranges.
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Figure 4.3: The resolution of Ayx g (left) and Az (right) as function of muon pr.

The differences of determined background and signal distribution of these five variables
are the key point for this method. We choose the distributions from same-sigh paired muons
as background. The signal distributions are evaluated from opposite-sigh paired muons,
subtracted by normalized background contribution. Then, we define a discrimate variable
R=(1-Y)/(14Y), whereY = [[,4 and y; = PDF/*% /PDF" for each variable.
PDF and PDF'™ denote the probability density function from the fitting result of nor-
malized signal and background distributions, respectively, as shown in Fig. 4.5. If there is a
signal-like muon candidate, its Y will be very small and R will be very close to 1; on the other
hand, a background-like muon candidate will have a very large Y and its R will be very close
to -1. The normalized R distribution of signal and background are shown in Fig 4.6. In order
to reject more background and have more signal left at the same time, we use e X (1 — €p)
to determind the appropriate R cut, where g denotes the signal efficiency, and 1 — ¢ is the
background rejection. As shown in Fig. 4.7, R > 0.17 is the optimal cut to select our muon
candidates, and we can reject 67% of background with 85% of signal left after applying this
selection. After applying the selections summarized in Table 4.2 for our muon candidates,
the numbr of .J /1) decreases to 3971, but the signal to backfround ratio increases to 92.37 as

shown in Fig. 4.8.
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Figure 4.5: Signal, background distributions and corresponding probability density functions of five

variables.
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Table 4.2: A summary of selections for muon candidates.

pr > 1.3 GeV/c
In| < 0.5
match to MTD hit
R > 0.17 from Likelihood Ratio Method
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fitted by a Gaussian and a second order polynomial.

4.3 Official STAR simulated MC sample

The STAR simulated MC samples of (1) x* and =~ from .J /1) parents and (2) hadrons
(w*, K, proton, and their antiparticles) are used to calculate the detector efficiencies and
acceptances. These particles, after generating by the single particle generator, are passed
through full GEANT 3 [28] simulation of the STAR detector to obtain amounts of simulated
signals. In order to mimic the reality, these signals are embedded into real events to have
reasonable background distributions, and then they are reconstrcted as simulated tracks by

the same processes as we use for real data.

4.4 PYTHIA sample

We generate MC samples by using PYTHIA 8 event generator [15] for two purposes: (1)
in order to have a comparison with our final results, a PYTHIA sample of 3M events, which
include hadrons (7", K, proton, and their antiparticles) and 1+ and i~ from the decay of
their J /1) parents in each event, is generated in proton-proton collisions at 200 GeV by using

the STAR Heavy Flavor tune [29], which is a set of parameters that are optimized to produce
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what we measured at RHIC with PYTHIA 8 generator; (2) to build the response matrices for
the removement of the detector effects on jets, a PYTHIA sample of 10M events with the
same particle sets as the previous one is generated in proton-proton collisions at 200 GeV by
using the STAR Heavy Flavor tune with a different setting for prompt ./ /1) production. A
summary of PYTHIA 8 settings for the .J /1) production is shown in 4.3.

Table 4.3: PYTHIA 8 settings for prompt and non-prompt .J /1 production.

Process for prompt 3S1, 3PJ, and 3DJ charmonium states
Hard QCD cc
J /v — ptu~ production via the COM and CSM
Process for non-prompt -
Hard QCD bb
J /v — ptu~ production
Number of events 3M 10M
Comparison with Construction of
Purpose
theoretical prediction response matrices
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Chapter 5  J /1) production cross section as a

function of jet activity

5.1 Jet reconstruction and .J /1) signal extraction

The first step to achieve our goal is to extract the number of J /¢ in different jet activity,
which defined as the number of jet in each event. With the aim of doing this, we have to re-
construct a set of jet for each dimuon pair. The jet reconstruction is implemented by FastJet
library [30] and anti-kp algorithm [31], which is commonly used for jet finding in experi-
ments at RHIC and LHC. In the anti-£7 algorithm, two variables, d;; and d;p, are responsible

for jet reconstruction and defined in Eq. 5.1 and Eq. 5.2, respectively.

| N
dij = mzn(piQiapj_‘,Qj)R—ij (51)

dip = pr%, (52)

where min(p;i., p}?j) is the inverse square of the highest transverse momentum of par-
ticle 7 in the list of particles that used in jet finding; AR;; = ,/ Anfj + Agbfj is the distance
in 7-¢ space between particle ¢ and j; R = \/m, defined as jet radius, is a distance
parameter; and d;p is the inverse square of the highest transverse momentum of particle 7.
The anti-krp algorithm compares d;z with d;; for every pairs of particle 7 and j. If d;; > d;p,
the four momenta of particle ¢ and j are summed as a new particle; otherwise the particle ¢
will be labled as a jet and removed from the list. This process will be repeated until every

particles are part of a jet.

In this analysis, we only use charged particles to reconstruct charged jets, and two re-
quirements on the jet candidates are applied: pJ; > 3 GeV/c to reject combinatorial jets and
|n7¢*| < 1— R due to the acceptance of TPC. Two different jetradii, R = 0.4 and R = 0.6, are

used to investigate the radius dependence. The settings of jet reconstruction are summarized
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in Table 5.1.

Table 5.1: A summary of jet reconstruction.

Charged jets
Anti-kt algorithm
R=0.4and 0.6
Pt >3 GeVie
W <1-R

The procedures of extracting the number of J /1 in different number of jet events are

shown in Fig. 5.1 and discribed as following:

1. Reconstruct two muons with opposite charges in an event as a dimuon pair and cal-

culate its mass.

2. Use the rest of tracks for jet reconstruction and count the number of jets. Note that

the two muons in the previous step are not used in this step.

3. Keep repeating the above steps with another dimuon pairs, so the dimuon mass dis-

tributions of different number of jet events are obtained.

4. Fitting these dimuon mass distributions in each number of jet categories to extract

the number of J /1) signal.

5.2 Corrected J/v yield in different jet activity

We have to remove the detector effects on the number of .J /1 before calculating its
production cross section so that our final results can be compared with theoritical predictions.

The production cross section of .J /1) as a function of jet activity is defined as:

corrected
do J/p—=ptp— (5 3)

ANjoi ANy x [ Ldt’

Br(J /i — ptpum) x
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Figure 5.1: The procedures of extracting .J /1) signals
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where Br(J /1) — p* ™) is the branching fraction of J /4 in dimuon decay channel; [ £dt is
the integrated luminosity; N, and AN, represent the number of jets and the width of each

Nje bin, respectively; and N¢orected s the number of .J /1) after correcting the detector

J/p—ptp

effects.

To obtain N j‘}gﬁfﬁeﬁu , the candidate-by-candidate weighting technique is used to correct
the detector effects, including acceptances and reconstruction efficiencies, which is discribed

as following:
Nis

j(;?;[ected Z w;, (5 4)

= A X €,¢00. ATrepresents the detector

where w is the weight of each J /1 candidate and w™
acceptances, which contains two parts: the kinematic acceptance of J /1 due to the pf. > 1.3
GeV/c and |n| < 0.5 selections on its decayed muons, and the MTD geometry acceptance of
muons due to the limited coverage of MTD in the ¢ direction. &,., is the total reconstruction

efficiency as definded:

Ereco = 5:1/125071 X Evter. (pT/w) X 5%“130(77“» ¢M) X E?\/[TD (p%7 Bk’l.“, MOd'M) X EZ 1D (p%)a (55)

VPD
dimuon

where ¢ is the efficiency of VPD in dimuon trigger events; £,,,. is the vertex finding

efficiency; erpc is the tracking efficiency of TPC; ey,7p is the MTD related efficiencies,
including (1) the MTD matching efficiency 74" (p), (2) the MTD response efficiency
ghekonse (ph), and (3) the MTD trigger efficiency %, 255" (phy., Bkl.*, Mod.*); and &, 1p is the
efficiency of muon identification. The ”square” on erpc, enmrp, and €, ;p represents these

are the efficiencies of the two muon candidates. The details of efficiencies and acceptances

are discribed in following sections.

5.2.1 VPD efficiency and vertex finding efficiency

The VPD efficiency in dimuon trigger events and the vertex finding efficiency of this
data set have been studied by another analysis [25]. PYTHIA events generated by different
tunes, Perugia 2012 tune for PYTHIA6 and STAR Heavy Flavor (HF) tune for PYTHIAS, are
responsible for estimating these efficiencies after passing through the GEANT3 simulation of

the STAR detector and taking background events into account by using real data. Figure 5.2
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shows the VPD effidiency times vertex finding efficiency. We take the average of those from

different PYTHIA tunes and fitting by a constant as the default efficiency.
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Figure 5.2: The VPD effidiency in dimuon trigger events times vertex finding efficiency as a function

ofp%w.

5.2.2 TPC tracking efficiency

The tracking efficiency of TPC is estimated by using the official STAR simulated MC
sample of J /1 — "~ and definded as:

reco.
tracking Nu (5 6)
TPC o Ntruth '
I

where [V, f]"“th represents the number of muons passed pr > 1.3 GeV/c and |n| < 0.5 se-
lections at truth level in the MC sample and N““> represents the number of muon tracks
reconstructed by TPC with the basic track quality and muon candidate selections. Figure 5.3
shows the TPC efficiency as a function of pl., which shows no pr dependence. As a result,
the TPC efficiency mainly varies in 17 — ¢ space due to the gaps in TPC. Furthermore, an
additional correction factor as function of p4. and ¢* space as shown in Fig. 5.4 is applied in
the range of -0.5 < |n*| < 0.2 because of an inefficiency around ¢ at about 5.7 rad in real data
due to the broken sector 20 in this run. Figure 5.5 shows the TPC efficiency as function of

n* and ¢*, in which this additional correction factor has been taken into account.
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5.2.3 MTD matching efficiency

The MTD matching efficiency is the probability of a reconstructed muon track that can
be projected to an MTD module and matched to a hit on MTD. The difinition can be written
as Eq. 5.7:

matching Number of muon track matched to M'T D hit
£ = .
MTD Number of muon track that can project to MT D module

(5.7)

This is an efficiency as a function of p. with a plateau of 63% as shown in Fig. 5.6

which is evaluated by the official STAR simulated MC sample.

5.2.4 MTD trigger efficiency

The MTD trigger efficiency contains the trigger electronic efficiency and the trigger
time window cut efficiency. The trigger electronic efficiency is defined as the probability of
an MTD hit, which generated by a muon candidate, can produce an electronic signal and sent
it to the QT (charge(Q)-and-time(T)) board. At the QT board, this signal is digitized, stored,
and analyzed. The trigger time window cut efficiency is from the online time window cut of
the difference between the particle’s flight time measured by the VPD and MTD in order to

reduce background events. These efficiencies are studied by another analysis [25] and their
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Figure 5.6: The MTD matching efficiency as a function of pf..

constant fitting functions are provided for this analysis as shown in Fig. 5.7. Both of these

efficiencies are about 99%.

=

0.99

Efficiency

0.98

0.97

MTD Trigger Efficiency (FitFunc)
==+ Trigger Time Window Cut

0.96
0.95 === Trigger Electronic
0.94

0.93

LI L L LI LB L LB

I A RS A RS RS A R
0.92 1.5 2 25 3 3.5 4 45 5

z

Figure 5.7: The constant fitting function of MTD trigger electronic efficiency and trigger time window

cut efficiency. Both of them are calculated as a function of pf..
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5.2.5 MTD response efficiency

The MTD response efficiency, as a function of the MTD backleg, MTD module, and p7,
is the probability of a track, which can project to an MTD module and produce a correspond-
ing hit on the MTD. The cosmic ray data taken in 2015 is used to calculate this efficiency
because most of cosmic ray that can reach earth surface are muons. However, when cosmic
ray muons reach to the top MTD modules, they pass through less material than those reach
to the bottom modules. As a result, the MTD response efficiencies of top MTD modules
are overestimated in low pr region. Therefore, the fitting function of the total efficiency of
bottom modules, as shown in Fig. 5.8, is used as a template for estimating the efficiencies of

all modules as shown in Fig. 5.9 to Fig. 5.36.
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Figure 5.8: The fitting result of the the total efficiency of bottom modules.

Figure 5.9: MTD response efficiencies of modules on backleg 1.
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Figure 5.15: MTD response efficiencies of modules on backleg 7.
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Figure 5.18: MTD response efficiencies of modules on backleg 11.
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Figure 5.19: MTD response efficiencies of modules on backleg 12.
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Figure 5.22: MTD response efficiencies of modules on backleg 15.
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Figure 5.23: MTD response efficiencies of modules on backleg 16.
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Figure 5.24: MTD response efficiencies of modules on backleg 17.
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Figure 5.27: MTD response efficiencies of modules on backleg 20.
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Figure 5.30: MTD response efficiencies of modules on backleg 24.
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Figure 5.31: MTD response efficiencies of modules on backleg 25.
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Figure 5.33: MTD response efficiencies of modules on backleg 27.
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Figure 5.34: MTD response efficiencies of modules on backleg 28.

39



Figure 5.36: MTD response efficiencies of modules on backleg 30.

5.2.6 Muon identification efficiency

The muon identification efficiency is from the advanced muon selection using the Like-
lihood Ratio (LR) method and can be calculated by a data-driven way, called “tag-and-probe
method”. In the tag-and-probe method, we distinguish the two tracks in each J /v candidate
into a tagged muon and a probed muon, as shown in Fig. 5.37. The tagged muon candidates
should pass though a tight selection (i.e., all selection for muon candidates, including the LR
selection) to ensure it with a high probability to be a muon. The probed muon candidates,
which play a key role in this method, are applied different selections: (1) basic selections
of muon candidate (i.e., pf > 1.3 GeV/c, |n*| < 0.5 and match to an MTD hit); (2) basic
selections of muon candidate and LR selection. Therefore, two different kinds of .J /v can-
didates are reconstructed: one contains probed j without LR cut; the other contain probed p
with LR cut. These setting of muon candidates for tag-and-probe method are summarized in

Table 5.2.

Table 5.2: Selections for tagged and probed muon candidates and the reconstructed J/y.

Tagged p Probed p Reconstructed J/y

basic selections + LR cut basic selections contain probed p without LR cut

basic selections + LR cut  basic selections + LR cut  contain probed p with LRcut
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utagged uprobed

Figure 5.37: Cartoon image of tagged and probed p candidates of a .J /4 candidate for tag-and-probe

method.

With the tag-and-probe method discribed above, the muon identification efficiency can
be calculated as following:

Nafte'r LR cut Nwith LR cut
o

| - I/
EuID = Nbefore LRcut ~— N without LR cut’ (5 8)
u

I/

where N)efore Licut and Nofter Bt yepresent the number of muons before and after ap-
plying Likelihood Ratio selection, respectively. N}%h LR cut and N}%’l‘mt LEcut represent the

number of J /v that their probed muons with and without LRcut, respectively.

Fig. 5.38 shows the Fitting result of Nf;;h LEcut and N}“/"fpho“t LEcut in different probed
muon pr bins. These dimuon mass distributions are divided into eight different p; ranges
of probed muon: [1.3, 1.4, 1.5, 1.6, 1.8, 2.2, 2.5, 3.0, 5.0 (GeV/c)] to investigate the pp
dependence of efficiency. The result of muon identification efficiency is shown in Fig. 5.39,

. bed 1 -
which increases from about 60% to 88% as pf. *"““* increases.

5.2.7 J/t kinematic acceptance

The kinematic acceptance of .J /) is from the kinematic selections (i.e., p > 1.3 GeV/

c and |n*| < 0.5) of their muon candidates and can be calculated with Eq. 5.9:

Number of J /v in acceptance
Total number of J /1

J /¢ kinematic acceptance = (5.9
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Figure 5.38: Fitting result of NV S‘ﬁh LReut and N}”/ifph"“t LReut for EuID-
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Figure 5.39: The muon identification efficiency as a function of pf..

We use a ToyMC generator to build an high statistics acceptance map as function of p%/ ¥ and

|y//%| as shown in Fig. 5.40, in which these .J /1 are assumed to be unpolarized.

Jy P, [GeV/c]

00 0.05 0.1 0.15 0.2 025 0.3 035 04 045 0.5

J/y rapidity

Figure 5.40: The .J /¢ kinematic acceptance as function of p%/ ¥ and ly? /Y.

5.2.8 MTD geometry acceptance

The MTD geometry acceptance is due to the gaps between MTD backlegs which causes
only 45% coverage in ¢ direction. We calculate it by using the official STAR simulated MC
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sample and the definition is:

Number of muon tracks can project to M'T'D module
MTD geometry acceptance =

Number of muon tracks reconstructed by T'PC

(5.10)
Fig. 5.41 shows the MTD geometry acceptance of single muon as function of p/., n* and ¢*,
where ten pf. ranges: [1.3, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.0, 10.0, 15.0 (GeV/c)] are used

to build these two-dimentional acceptances in 7 — ¢ space.

lo.1

)
?

Figure 5.41: MTD geometry acceptance as function of p‘T‘, n* and ¢*.

5.2.9 Closure test of efficiency and acceptance

The closure test is used to ensure our efficiencies and acceptances are calculated cor-
rectly, and the MTD matching efficiency, .J /1 kinematic acceptance, and MTD geomatry
acceptance are checked. In this closure test, the corrected distributions are obtained by using
aforementioned efficiencies to correct the reconstructed samples (N527), and then compared
to the truth distributions (Nr,). The result of closure test of MTD matching efficiency, J /¢
kinematic acceptance and MTD geometry acceptance are shown in Fig 5.42, Fig 5.43, and

Corr.
Fig 5.44, respectively. The ratios Nicco ) are fitted by a constant function, and the results
g p y NT'ruth y

show that the closure tests are passed, i.e. the ratios are close to one.
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5.2.10 Signal extraction of corrected .J /v yield

By using the candidate-by-candidate weighting method with the efficiencies and ac-
ceptances described above, the dimuon mass distribution in different number of jet events
are generated and fitted with different combination of signal and background functions to ex-
tract the corrected number of .J /1. We use Gaussian and double Gaussian as signal functions.
Polynomial functions and template functions from the fitting result of same sign (SS) muon
pairs are used as background functions. The fitting results by using the four combinations of

these functions are shown in Fig. 5.45 to Fig. 5.48.
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Figure 5.45: Signal extraction of corrected Ny, by fitting with Gaussian+Polynomial functions.

The upper and lower rows show the results for jet R=0.4 and 0.6, respectively.

The extracted distributions of the corrected IV, as a function of raw jet activity are
shown in the left-hand-side plots in Fig. 5.49. Their average distributions are taken as the
default result as shown in the right-hand-side of these figure, and their relative statistical
uncertainties are taken from the fitting results using the Gaussian plus polynomial function.
Furthermore, these extracted signal from the various fits are used to estimate the systematic

uncertainty and described in Chapter 6.
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Figure 5.46: Signal extraction of corrected N/, by fitting with Gaussian function+SS templates.

The upper and lower rows show the results for jet R=0.4 and 0.6, respectively.
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Figure 5.47: Signal extraction of corrected Ny, by fitting with double Gaussian+Polynomial func-

tions. The upper and lower rows show the results for jet R=0.4 and 0.6, respectively.
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Figure 5.48: Signal extraction of corrected Ny, by fitting with double Gaussian function+SS tem-

plates. The upper and lower rows show the results for jet R=0.4 and 0.6, respectively.
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5.3 Unfolding for correction of jet activity

After the N, 1s corrected, the detector effects on the jet activity (V. per event) are also
needed to be removed. The unfolding technique is used to achieve this, and the unfolding
algorithm in the RooUnfold package [32] is used in this analysis. The response matrices
demonstrate the relation between particle level (truth) and detector level (measured) V.,

The details are described in the following.

5.3.1 J/1 and jets in the PYTHIA events

To build the response matrices, the PYTHIA sample of 10M events as discribed in Sec-
tion 4.4 is used to reconstruct the particle and detector level jets. Similar with the procedure
in Section 5.1 that used in real data, we use the number of particle and detector level J /1) as

the number of events of particle and detector level jet activity, respectively.

The J /4 in this PYTHIA sample are directly used as the particle level .J/¢. On the
other hand, ;1™ and 1~ from the same .J /¢ parent are applied the muon pr resolutions, which
calculated by using the STAR simulated MC sample. Then, they are reconstructed into de-
tector level J /1. The same as in real data, a |y| < 0.4 selection is applied to both particle
and detector level J /).

Before the particle and detector level jets are reconstructed, the hadrons in this PYTHIA
sample are applied an additional modification on their transverse momenta, which will be
discribed in Section 5.3.4, to make the detector level jet activity in the response matrices
closer to reality. In the case of detector level jets, selections of pr > 0.2 GeV/c and |n| <
1, the pr resolutions and TPC tracking efficiencies of hadrons are applied to these hadrons,
and then they are reconstructed as detector level jets. The same as we used to analyse the
real data, two kinematic selections for jets, pr > 3 GeV/c and |n| < 1-R are applies to both
particle and detector level jets in this PYTHIA sample. The reconstruction of J /¢ and jets
of this PYTHIA sample are summarized in Table 5.3.
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Table 5.3: Particle and detector level J /4 and jet of the PYTHIA data for response matrix.

J /) Jets

e additional modification of pladror
i’ >3 GeVie
'] <1-R

Particle level | |y7/%| < 0.4

Reconstructed from particle level hadrons

e additional modification of pftadron

' ° |nhad7'(m < | 1
pr resolutions of daughter muons
Detector level o phadron > (.2 GeV/e

ly?/*| < 0.4

p];t >3 GeV/c
[ < 1R

Reconstructed from detector level hadrons

e hadron py resolutions and TPC efficiencies

5.3.2 pr resolution of muons and hadrons

To make the momentum resolution for muons in the PYTHIA sample close to the reality,
the normalized distributions of (p4¢c®: — piruth) /piruth in different pii " ranges are generated

truth

from the STAR simulated MC sample, where p7*"" and p/¥“> are the truth and reconstructed
muon pr in the MC sample, respectively. These distributions are then fitted with double
Gaussian functions as shown in Fig. 5.50 to Fig. 5.69. These fitting functions are used to
apply the resolution to the muon’s transverse momentum in the PYTHIA sample by randomly
getting a value of (pieeo — plruth) /plruth with the function corresponding to the truth muon
pr in PYTHIA sample. Then, the reconstructed pr of each muon is calculated in PYTHIA
sample by Eq. 5.11, where py" 714 truth gng DY THIA 7eco- 316 the muon py in the PYTHIA

sample before and after applying these pr resolutions, respectively.

;YTHIA, reco. _ p;YTHIA, truth % (1 + (p%eco. o péfuth) prtlfuth) (511)

However, after applying these pr resolutions, the width of J /) mass distribution, which

reconstructed by these muons, is still smaller than that in real data. The reason is that the
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step.

65<p! ™" <66[GeVic] 66.<p! ™" < 6.7 [GeVi 67 <p. ™" <68[Gevic] 68.<p!™" <69[GeVic] 69.<p! ™" < 7.0 [GeVi
z 20.F zouf zo1f zo1f
& ol 4 Data H —4—Data H —4—Data H —4— Data & —+-Data
s Zonocass H Do S e, s T oeocass H Do
11 NOF - 09 14 ; g ol or g oo nor 2 o nor
¥ vor- ¥of e i o H ot o ] o
E o £ £ E £
H 4 L 5ok oo L
oosf-
E oo oodf- ool
o oo
ooif oodf oot oo ool
oo oo oo ooef- ooaf-
R R T E K BT s e et 0 N T T XX e T e X R A T L Y T
o PEm PR oo o

Figure 5.63: (pico- — plruth) /ptruth of different p’r“t" ranges: 6.5 to 7.0 GeV/c with a 0.1 GeV/c
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pr resolution of muons in the MC sample is not close enough to the reality. An additional

smearing of the muon py in the PYTHIA sample with Eq. 5.12 is used to solve this issue.

PYTHIA, smeared __ PYTHIA, reco. . PYTHIA, reco.
T = Gaus(py X (14 shiftpar.), pp X smear par.))

(5.12)
First, we set the smearing parameter as 0, and then scan different shifting parameters of muon
to reconstruct various of J /1) mass distributions. Then we fit these J /¢ mass distributions
and look at their mean value to determine the appropriate shifting parameter. Second, we fix
the shifting parameter, and then scan different smearing parameters to reconstruct various of
J /1 mass distributions with different widths. Then, we use these distributions as signal tem-
plates, combined with a polynomial background function, to fit the mass distribution in real
data. The optimal smearing parameter is determined by the one with the lowest x2/NDF.
The results of finding the shifting and smearing parameter are shown in Fig. 5.70. Fig. 5.71
shows the comparison of the .J /1) mass distribution before and after applying this additional
smearing with that in real data. Furthermore, we also check that these parameters are good
for all py ranges of J /1. These results are shown in Fig 5.72 and the smeared .J /1) mass

distributions are matched with the real data very well .
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Figure 5.70: The additional shifting parameter of muons in the PYTHIA sample as a function of
the mean value of .J /1) mass distribution (left) and the smearing parameter as a function of fitting

x2/NDF (right).

In the case of applying pr resolutions to the hadrons in the PYTHIA sample, we use
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Figure 5.71: Comparison of the .J /1) mass shapes in the PYTHIA sample before and after applying

this additional smearing with that in real data.
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Figure 5.72: Comparisons of the J /1) mass shapes in the PYTHIA sample with that in real data in

different p ranges.
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the same method and parameters as the case of muons. This is reasonable because the pr

resolution of muons and hadrons come from the same tracking system.

5.3.3 TPC efficiencies of hadrons

The TPC tracking efficiencies of hadrons are calculated with the same method as we
used for that of muons in Section 5.2.2. The definition in Eq. 5.13 is used to calculate the

TPC efficiencies, where the N uh

hadron

is the number of hadrons passed pr > 0.2 GeV/c and

reco.
hadron

In| < 1 selections at truth level and is the number of hadrons reconstructed by TPC
with the basic track quality and kinematic selections (the same additional correction factor
for the inefficiency of sector 20 as shown in Fig. 5.4 is also applied). The efficiencies of pion,
kaon, proton, and their antiparticles as functions of their transverse momenta fitted by error

functions are shown in Fig. 5.73.
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Figure 5.73: Upper row shows the TPC tracking efficiencies of pion, kaon and proton (from left to

right) and lower row shows the efficiencies of their corresponding antiparticles.
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5.3.4 The additional modification of hadron pr

In order to have some constraints on the construction of response matrices, the detec-
tor level jet activitiy from the PYTHIA sample are tuned to be closer to the reality. This
is implemented by applying an additional shifting on the hadron p; before applying their
pr resolutions and TPC efficiencies. To determine the shifting parameter, we use the same
method as the additional smearing for the muon py resolution. The modified hadron trans-
verse momenta are obtained by using Eq. 5.14. We set smearing parameter as 0 first, then
scan different shifting parameters to modify hadron p7, and then apply their p; resolution and
TPC efficiencies. These hadrons are then reconstructed as detector level jets, so the various
distributions of detector level jet activity corresponding to different shifting parameters can
be obtained. We use these distributions as template to fit the jet activity in real data and find
for the smallest x2/ N DF for the best shifting parameter. The fitting x>/ N DF as a function
of shifting parameters for jet R=0.4 and 0.6 are shown in Fig. 5.74

p;’}"diﬁed — Gaug(p"TTigmal X (14 shift par.), pOT”gmal X smear par.)) (5.14)

o
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Figure 5.74: The fitting x?/ N DF as a function of shifting parameters. The best shift parameters are
10% and 9% for jet R=0.4 (left) and R=0.6 (right), respectively.
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5.3.5 Response matrices

The particle and detector level N, that counted from the jets in PYTHIA sample as
described above are used to build our response matrices. Because the number of J /1) is used
as the number of events of different /Vj.,, we build our response matrices by the following
procedures: (1) when particle and detector level J /1) both exist, fill the response matrix with
corresponding particle and detector level V,.; (2) if the particle level J /¢ exists, while the
detector level J /1 lost due to its rapidity selection, then this event is categorized as a missing
event. The response matrices which constructed by using the jets with R=0.4 and R=0.6 are
visualized as two-dimension diagrams in Fig. 5.75. Note that the missing events are not

shown in these plots.

©

®

Response matrix
R=04

Response matrix
R=0.6

Part. Level Ny,
(2] ~
g
Part. Level Ny,
~
g

[2)

6 a 8 6 7 8
Det. Level Ny, Det. Level N,

Figure 5.75: The response matrices built by using the jets with R=0.4 (left) and R=0.6 (right) in the

PYTHIA sample. Note that the missing events are not shown here.

5.3.6 Closure test of the response matrices

We perform the closure test to ensure that our response matrices are worked for the un-
folding procedure. The detector level jet activity from the PYTHIA sample with 3M events,
which generated the same as that we use to build the response matrices and has a closer statis-
tics to the real data, is used. The RooUnfoldBayes algorithm, which use the method based
on Bayes’ theorem [33] in the RooUnfold package, is responsible for the unfolding in the

closure test and the real data analysis. In this algorithm, our response matrices and repeated
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application of the Bayes’ theorem, called “iterations” [32], are used to perform the unfold-
ing. Unfolding iterations from one to six are used to perform the closure test and the results
for different jet radii are shown in Fig. 5.76 and Fig. 5.77. The unfolded results of different

iterations are all consistent with the particle level (truth) distributions.
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Figure 5.76: The closure test for the response matrix built by using the jets with R=0.4 and iterations
from one to six. The left plot shows the unfolded result, compared with particle level (truth) and
detector level (measured) distributions. The right plot is the ratio of the unfolded distributions to the

truth distribution, which consistent with one for different iterations.
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Figure 5.77: The closure test for the response matrix built by using the jets with R=0.6 and iterations
from one to six. The left plot shows the unfolded result, compared with particle level (truth) and
detector level (measured) distributions. The right plot is the ratio of the unfolded distributions to the

truth distribution, which consistent with one for different iterations.
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5.3.7 The unfolded result of jet activity

In real data, the same response matrices are used, and unfolded jet activity up to four
jet event for different jet radii, which are compared with the raw jet activity as discribed in
Section 5.2.10 as shown in Fig. 5.78. We use four iterations for the unfolding to perform

these results because four iterations is usually sufficient [32].
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Figure 5.78: The red stars show the unfolded jet activity for jet R=0.4 (left) and R=0.6 (right), com-

pared with the raw jet activity which are denoted by black open circles.
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Chapter 6  Systematic uncertainties

Before comparing our unfolded results with the theoritical predictions, the systematic
uncertainties are required to be estimated carefully. In this chapter, the systematic uncertain-
ties from signal extraction, the unfolding procedure, hadron p; modifications for the response

matrices and the detector efficiencies are discribed and estimated.

6.1 Signal extraction

The systematic uncertainty of signal extraction is from the different signal and back-
ground model that used to extract signal numbers. We estimate this uncertainty by unfolding
the jet activity extracted with different fitting functions which are discribed in Section 5.2.10,
and then comparing their ratio to our default unfolded results in Section 5.3.7 to take the
largest diviation of each jet activity as the uncertainties. These unfolded results and the sys-
tematic uncertainties as functions of jet activity are shown in Fig. 6.1 and Fig. 6.2. The signal

numbers and their uncertainties are summarized in Table 6.1 and Table 6.2.
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Figure 6.1: The unfolded results of jet activity with R=0.4 extracted by different signal and background

model (left) and systematic uncertainties of signal extrction as a function of jet activity.
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Table 6.1: The corrected numbers of .J /1 signal and their uncertainties of different unfolded jet ac-

tivity of R=0.4.

Jet activity (R=0.4) Signal number + stat. uncertainty £ syst. uncertainty

Nijet =0 2901820 + 89956 £ 90537
Nijer =1 104547 + 29639 + 14386
Nijer =2 21195 £ 8885 £+ 1094
Nijer =3 828 + 461 + 94

2 10°€ R=0.6

% E —4— Default result 11
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Figure 6.2: The unfolded results of jet activity with R=0.6 extracted by different signal and background

model (left) and systematic uncertainties of signal extrction as a function of jet activity.

Table 6.2: The corrected numbers of .J /1 signal and their uncertainties of different unfolded jet ac-

tivity of R=0.6.

Jet activity (R=0.6) Signal number =+ stat. uncertainty £ syst. uncertainty

Nijet =0 2857020 £ 90568 £ 85425
Nijer =1 123850 + 46741 £+ 13215
Njer =2 38620 £ 13868 + 3317
Njer =3 1915 £ 897 £ 195
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6.2 Detector efficiencies

The systematic uncertainties of corrected .J /1 yields from the detector efficiencies have
been studied by another analysis [25] as shown in Table 6.3. Because these are the uncertain-
cies of the corrected number of J /v signal, we can use them directly to adjust our extracted
J /1 signal numbers that discribed in Section 5.2.10 to obtain different distributions of raw jet
activity. Then, we unfold these distributions and take the largest diviation as our systematic
uncertainties. Figure 6.3 and Fig. 6.5 are the adjusted raw jet activity distributions for R=0.4
and R=0.6, respectively, and their corresponding unfolded distributions are shown in Fig. 6.4
and Fig. 6.6. Figure 6.7 shows our estimation of these systematic uncertainties. In the case
of these uncertainties with the same jet radius, because we directly adjust the distributions
and unfold with the same response matrix, the result of our uncertainties are just the same as

their sources as shown in Table 6.3.

Table 6.3: The sources of systematic uncertainties of corrected J /v yield from the detector efficien-

cies.

Source Syst. uncertainty
VPD and vtx. finding 9.9%
TPC tracking 4%
MTD matching 5.5%
MTD trigger 1.4%

Figure 6.3: The corrected .J /¢ yields adjusted by the systematic uncertainties from detector efficien-
cies as a function of raw jet activity with R=0.4. From left to right are the distributions adjusted by
VPD and vtx. finding efficiency, TPC tracking efficiency, MTD matching efficiency and MTD trig-

ger efficiency.
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Figure 6.4: The unfolded results of jet activity with R=0.4 that adjusted by, from left to right, the

systematic uncertainties of VPD and vtx. finding efficiency, TPC tracking efficiency, MTD matching

efficiency and MTD trigger efficiency.
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Figure 6.6: The unfolded results of jet activity with R=0.6 that adjusted by, from left to right, the

systematic uncertainties of VPD and vtx. finding efficiency, TPC tracking efficiency, MTD matching
efficiency and MTD trigger efficiency.

66



.20 __20
L R=04 L R=0.6
@ 18- ——- VPD & Vi finding ¢ 18~ ——- VPD & Vix finding
:‘E [ ——- TPC tracking ‘E [ ——- TPC tracking
© - o f—
5 18— mTD matching 5 16— v matching
S 14f——- MTDigger S 14F——- MTD tigger
2 F e [
T 12 T 12
e 2t
10f 10
8- 8
6 Py
4 4
2 oF
o 1 1 1 1 o 1 1 1 1
0 0 1 2 3 0 0 1 2 3
Jet activity Jet activity
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6.3 The iterations of unfolding

We use the unfolded results with 4 iterations as our default results, but there is no guaran-
tee that 4 iterations is the best choose. Therefore, we take the diviation of the unfolded results
with 6 iterations as a source of systematic uncertainty of unfolding as shown in Fig. 6.8 and
Fig. 6.9. Table 6.4 and Table 6.5 are the detailed values of these uncertainties for differ-
ent jet radii. The N, = 3 bin has the largest uncertainty as expected since there is lack of

information to unfold this bin.
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Figure 6.8: The left diagram shows the unfolded results of jet activity with R=0.4 from 4 (default) and
6 iterations. Their ratio to default result are shown in the right-hand-side plot, in which the red points

denotes the diviation of 6 iterations and is taken as the systematic uncertainty.
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Table 6.4: The systematic uncertainties from the unfolded results with 6 iterations for jet radius R=0.4.

Jet activity (R=0.4) Systematic uncertainties

Nyt =0 0.06%
Niw=1 3.61%
Njer =2 10.96%
Njer =3 29.16%
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Figure 6.9: The left diagram shows the unfolded results of jet activity with R=0.6 from 4 (default) and
6 iterations. Their ratio to default result are shown in the right-hand-side plot, in which the red points

denotes the diviation of 6 iterations and is taken as the systematic uncertainty.

Table 6.5: The systematic uncertainties from the unfolded results with 6 iterations for jet radius R=0.6.

Jet activity (R=0.6) Systematic uncertainties

N =0 0.16%
Nje =1 7.94%
Njo =2 14.17%
Nje =3 11.92%

68



6.4 Hadron p; modification for response matrices

We implement a modification of hadron p; in the PYTHIA data for the construction of
our responses matrices, which could be another source of systematic uncertainty. To exti-
mate this uncertainty, we use different shifting parameters to modify the hadron pr and build
various corresponding response matrices. Then, these various response matrices are used to
obtain different unfolded results and the largest diviation of each jet activity are taken as the
uncertainty. The default shifting parameters are 10% and 9% for jet R=0.4 and R=0.6, re-
spectively, so we use different shifting parameter of [8%, 9%, 11%, 12%] for R=0.4 and [7%,
8%, 10%, 11%] for R=0.6 to this purpose. The response matrices with different shifting of
hadron pp are shown in Fig. 6.10 and Fig. 6.12 for different jet radii. Fig. 6.11 and Fig. 6.13
are the unfolded results by using these response matrices and their diviations to default results
for jet R=0.4 and R=0.6, respectively. The detailed values of the corresponding uncertainties

can be seen in Table 6.6 and Table 6.7.

fing o 2 « 12%

Part Level N,
Part. Level N,

I TR
T2 3 4 5 8 7 8
Det. Level Ny,

Figure 6.10: Different response matrices built with different shiftng of hadron pr in the PYTHIA data
for jet R=0.4.

Table 6.6: The systematic uncertainties from the modification of hadron pr for jet R=0.4.

Jet activity (R=0.4) Systematic uncertainties

Ny =0 0.03%
Njg =1 0.43%
Njg =2 2.28%
Nje =3 11.45%
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Table 6.7: The systematic uncertainties from the modification of hadron pr for jet R=0.6.

Jet activity (R=0.6) Systematic uncertainties

Nt =0 0.08%
Njg =1 1.31%
Njo =2 1.74%
Nje =3 7.60%

6.5 Total uncertainties

The total uncertainty, 0.4, can be calculated by using Eq. 6.1.

2 _ 2 2
Ototal = O stat. + E :Ui,syst. (61)
%

On the right-hand-side of this equation, o, represents the statistical uncertainty and
> 0227 syst. is the square of total systematic uncertainty, where o; s, represents each of them.
These uncertainties for the jet activity with different jet radii are summarized in Fig. 6.14,
Table 6.8, and Table 6.9. For both jet radii, the total uncertainty are dominated by systematic
uncertainties in N,.; = 0 events. However, due to the lower statistics in events with N,

larger than 0, their total uncertainties are all dominated by very large statistical uncertainties.
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Figure 6.14: The total uncertainty, statistical uncertainty and all sources of systematic uncertainties

for jet R=0.4 (left) and R=0.6 (right).
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Table 6.8: A summary of statistical, total systematic and total uncertainties for jet activity with R=0.4.

Jet activity (R=0.4) Stat. uncertainty Total syst. uncertainty Total uncertainty

Njet =0 3.10% 12.49% 12.87%
Nijer =1 28.35% 18.68% 33.95%
Nijer =2 41.92% 17.27% 45.34%
Njer =3 55.74% 35.43% 66.05%

Table 6.9: A summary of statistical, total systematic and total uncertainties for jet activity with R=0.6.

Jet activity (R=0.6) Stat. uncertainty Total syst. uncertainty Total uncertainty

Njet =0 3.17% 12.46% 12.86%
Njer =1 37.74% 18.02% 41.82%
Njer =2 35.91% 20.58% 41.39%
Njer =3 46.84% 21.19% 51.41%
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Chapter 7 Results and Future works

7.1 Results and conclusions

The results of the .J /1) production cross section as a function of jet activity with jet ra-
dius R=0.4 and R=0.6 are shown in Fig. 7.1, where the red stars denote the results from this
analysis with the error bars as the statistical uncertainties and boxes as the systematic uncer-
tainties. These measurements are compared with the NRQCD calculations implemented by
PYTHIA 8 [15] samples which discribed in Section 4.4 and denoted as the blue histograms.
Both results with different jet radii have good agreements with the PYTHIA predictions. We
also looked at the ratio of the two experimental distributions with different jet radii and com-
pared with PYTHIA prediction to investigate the dependence on different size of jets. This
comparison is shown in Fig. 7.2, and it is obvious that the experimental distribution follows
a different trend compared with PYTHIA prediction. The ratio from experimental data de-
creases as jet activity increases, while the dependence on jet radius is not found in PYTHIA
prediction. These results could also be compared with current theoretical models and provide

theorists more information to have better understanding of quarkonium production.
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Figure 7.1: The production cross section of .J /1) as a function of jet activity with jet R=0.4 (left) and
R=0.6 (right). The red stars denoted the results from this analysis, and its statistical uncertainties are
denote as the error bars, and the boxes are the systematic uncertainties. The blue histograms are the

NRQCD predictions implemented by PYTHIA 8 [15].
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Figure 7.2: A comparison of .J /1) cross section as function of jet activity with different jet radii.

7.2 Future works

To remove the detector effects on the jet activity in our analysis, we directly apply the
hadron efficiencies and resolutions to the PYTHIA sample for the reconstruction of response
matrices, so some of detector effects could be missed. Accordingly, a full simulated PYTHIA
sample with the GEANT simulation of the STAR detector will be needed for a more precise
estimation of detector effects. Regarding the systematic uncertainties, we have estimated
several of them, there are more sources that we have to take into account, for example, the
uncertainty from the muon identification and different PYTHIA tunes for building the re-
sponse matrices. Besides of systematic uncertainties, there is another uncertainty from the
polarization of .J /¢ which will affect its kinematic acceptance. This effect, called spin-
alignment”, is due to the different angular distributions of the u™ and ;~ daughters from
different polarized J /1 and is not negligible. The relation between angular distributions of
the ©* and p~ and the polarization of their parent .J /4 is discribed in Eq. 7.1 in the .J /1) rest
frame, as shown in Fig. 7.3. Furthermore, we will use the p+p at 510 GeV data collected in

2017 to perform a more detailed analysis soon.

d*N

dcos0d0 oc 14 Agcos® @ + \ysin 0 cos 2¢ + Mgy sin 26 cos ¢. (7.1)
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Figure 7.3: The distributions of the angular of the lepton in the rest frame of its parent quarkonium [16].
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