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Abstract

Directed flow (v1) describes the collective sideward motion of produced particles and
nuclear fragments in heavy-ion collisions. It carries information on the very early stage
of the collision, especially at large pseudorapidity (in the fragmentation region), where
it is believed to be generated during the nuclear passage time. Directed flow therefore
probes the onset of bulk collective dynamics during thermalization, providing valuable
experimental guidance to models of the pre-equilibrium stage. Model studies have
indicated that directed flow is sensitive to the shear viscosity of the hot QCD matter.
Furthermore, directed flow has demonstrated strong constraining power on the initial
baryon stopping and can serve as a probe for the equation of state in heavy-ion
collisions. Past measurements have indicated that the directed flow signal is most
pronounced at the forward(backward) (pseudo)rapidity. Therefore, any sensitivity
to the initial state, hydrodynamic evolution, or the equation of state may be more
evident at large (pseudo)rapidities.

In 2018, the Event Plane Detector (EPD, 2.1 < |η| < 5.1) was installed in STAR
and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination
of EPD and high-statistics BES-II data enables us to extend the v1 measurement to
the forward and backward η regions. In this work, we present the measurement of v1
over six units of η in Au+Au collisions at √sNN =19.6 and 27 GeV using the STAR
EPD. EPD is a pre-shower scintillator detector mainly designed for reconstructing
the event plane angle. In order to use it as the particles of interest region rather
than the reference, an entire new method was developed to ensure the accuracy of
this analysis. The results of the analysis at √sNN =19.6 GeV exhibit excellent con-
sistency with the previous PHOBOS measurement, while elevating the precision of
the overall measurement to a new level. The increased precision of the measurement
also revealed finer structures in heavy-ion collisions, including a potential observation
of the first-order event plane decorrelation. The “limiting fragmentation” of v1 was
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observed at all the centralities. It is interesting to see this energy scaling extends
beyond yields to the dynamics, as it might offer us new insights into the particle
production mechanism in the fragmentation region. Multiple physics models were
compared to this experimental measurement. Only transport model and three-fluid
hybrid model can reproduce a sizable v1 at large η as what was observed experimen-
tally. This underscores the importance of incorporating all segments of the heavy-ion
collision in model studies, especially at BES energies where the nuclear fragments can
substantially influence particle production across the entire pseudorapidity range.
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Chapter 1
Introduction

1.1 QCD phase diagram and QGP
There are four fundamental interactions in the universe: gravity, electromagnetic
interaction, strong interaction and weak interaction. This thesis focuses on the study
of the strong interaction. In the Standard Model (Figure 1.1), all the hadrons are
made of smaller constituent elementary particles called quarks and gluons. Quarks
are fermions and carry both electric and color charge1. They have six flavors: up
(u) and down (d); charm (c) and strange (s); top (t) and bottom (b). Antiquarks
carry exactly the opposite flavor, electric charge and color charge to quarks. Qluons
are bosons and only carry color charge. They are the strong force carrier and have
eight color combination states. The Quantum Field Theory for describing the strong
interactions between quarks and gluons is called Quantum Chromodynamics (QCD).
One remarkable feature of QCD is the property of asymptotic freedom: quarks and
gluons tend to interact weakly over short distances and strongly over longer distances.
Figure 1.2 shows the measurement of QCD coupling constant (αs) as a function of
the energy scale. The running coupling decreases approximately as[1]:

αs(Q
2) =

1

β2 ln(Q2/Λ2
QCD)

, (1.1)

where
β2 =

11Nc − 2Nf

12π
, (1.2)

1Three color charges are denoted as red, green and blue. All three colors mixed together, or any
one of these colors and its complement, is ”colorless”. “color charge” is completely unrelated to the
everyday meaning of “color” and “charge”
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with Nc = 3 the number of colors and Nf the number of quark flavors. While Nf = 6

in the Standard Model of particle physics, the effective number of flavors relevant for
a given physical process depends on the momentum scale Q and may be smaller than
six[1]. ΛQCD ≈ 200 − 300 MeV is the fundamental scale of QCD, αs becomes large
near Q ≈ ΛQCD. At large energy scale (Q above a few GeV), when αs ≪ 1, QCD
can be solved perturbatively, while at lower energies, first-principles Lattice QCD
calculations are usually used.

Studying the QCD phase diagram is one of the primary goals of nuclear physics[2].
Figure 1.3 illustrates our modern understanding of it in terms of temperature (T ) and
baryon chemical potential (µB). Every point on the phase diagram represents a stable
thermodynamic state that can be characterized by the equation of state (EoS). EoS
describes the relationships between various thermodynamic quantities such as energy,
density, temperature, pressure, and etc. It can also describe the phase transition
between different states of matter. In nature, quarks and gluons do not exist as
free particles but are combined into hadrons, this phenomenon is known as quark
confinement. However, at extremely high energy densities, the strong force between
quarks and gluons becomes weak due to asymptotic freedom and the hadronic matter
dissolves into a system of deconfined quarks and gluons. This phase of matter is called
Quark Gluon Plasma (QGP). It is believed to fill the early universe during 10−6 s
after the Big Bang. QGP was first predicted theoretically and later found at collider
experiments[3, 4, 5, 6, 7]. First-principle lattice QCD calculations have established
the transition between the QGP and hadron gas to be a crossover transition at the
critical temperature Tc = 154 ± 9 MeV for µB = 0[8]. At finite µB = 0, QCD-based
models predict a first-order phase transition and the existence of a critical point at
the end of the first-order phase transition line. However, the locations of the phase
boundary and the critical point depend on model assumptions. The finite µB area
of the QCD phase diagram can only be explored by experimental measurements and
detailed modeling since the first-principle lattice calculations of QCD EoS are no
longer stable at high µB.

1.2 Relativistic Heavy-ion collision
1.2.1 Evolution of relativistic heavy-ion collision

A droplet of QGP can be reproduced in the laboratory by colliding two beams of
accelerated nuclei whose speed is close to the speed of light. Figure 1.4 illustrates
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Figure 1.1: Elementary particles described in the standard model. Figure taken from
[9]
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Figure 1.2: Summary of measurements of αs as a function of the energy scale Q. The
respective degree of QCD perturbation theory used in the extraction of αs is indi-
cated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-leading order;
NNLO+res.: NNLO matched to a resummed calculation; N3LO: next-to-NNLO).
Figure taken from Ref.[10]
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Figure 1.3: a sketch of the phase diagram of nuclear matter. Lattice QCD estimates
indicate that the critical point falls within the interval 250 < µB < 450 MeV[11, 12].
The phase space covered by various experiments are also plotted.
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Figure 1.4: Various evolution stages of relativistic heavy-ion collisions from left to
right, with corresponding physics descriptions and associated time scales at the bot-
tom. Figure taken from Ref.[13]
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various evolution stages of the relativistic heavy-ion collisions and the corresponding
time scales. When two nuclei that travel in the opposite direction approach each
other, they are flattened along the beam direction due to the Lorentz contraction.
Then they pass through each other, depositing a large amount of energy in the over-
lapping zone. Right after the collision, a hot, dense system of deconfined quarks and
gluons is created (QGP). There exist several frameworks to describe this transition,
for example: QCD string breaking, QCD parton cascades, or color glass condensate
evolving into glasma and later into the QGP[14]. The transportation of baryon num-
ber in this process has aroused great interests in the heavy-ion community. Figure
1.5 shows the net proton density distribution measured at multiple collision energies.
In the conventional picture, the baryon number is carried by the valence quarks.
At sufficiently high energies, they are expected to pass through each other and end
far from midrapidity in the fragmentation region[15, 16]. Therefore, the observed
nonzero net proton density around the midrapidity is striking, as it must come from
the colliding nuclei due to the conservation of baryon number. This phenomenon is
usually referred as “baryon stopping”[17]. The mechanism through which the baryon
number gets transported from the beam rapidity to the midrapidity is unknown and
remains a topic of intense research[18, 19, 20, 21].

The QGP reaches local thermal equilibrium in about 1 fm/c. During this rapid
thermalization, thermodynamic pressure is generated in the QGP, which acts against
the surrounding vacuum and cause fast collective expansion of the reaction zone[22].
Then the system undergoes hydrodynamic expansion and cools down as it becomes
more dilute. When the system is below the critical temperature Tc, the strongly cou-
pled quarks and gluons recombine into hadrons. At this point, the system reaches the
strongly interacting hadron gas phase where unstable hadrons decay and hadrons un-
dergo elastic and inelastic scatterings. When the inelastic collisions between hadrons
cease, the system reaches “chemical freeze-out”. Approximately 10 fm/c after the
collision, the system reaches “kinetic freeze-out” where the hadrons stop interacting
(the mean free path of hadrons is of the same order as the size of the system). Then
all the particles keep moving towards the detectors and get registered.

1.2.2 Model simulation

As mentioned in Chapter 1.1, the QCD EoS at finite µB can only be inferred from the
systematic comparisons between detailed modeling and experimental measurements.
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Before examining the experimental efforts, let’s briefly discuss the model simulation
of heavy-ion collisions.

When the QGP reaches local thermal equilibrium, the subsequent evolution can
be described by relativistic hydrodynamics until the hadronization. In model studies,
the second-order viscous hydrodynamics is usually used. Two important transport
coefficients in this case are the shear (η) and bulk (ζ) viscosity over entropy (s).
Both of them are very small and depend on the T and µB of the system. The shear
viscosity describes the system’s resistance to deformation, while the bulk viscosity
describes the system’s resistance to expansion. Therefore, both of them have impor-
tant influence on the final particle distribution. At finite baryon chemical potential,
the net baryon current diffusion should also be taken into account [23, 24, 25, 26].
The aforementioned net proton density distribution will then be modeled as a result
of the initial baryon stopping and the subsequent hydrodynamic baryon transport.

Any hydrodynamic simulation requires an initial state, which can be obtained from
parametrized initial conditions or the initial state generated by a transport model.
Then, the hydrodynamic equation needs to be solved together with the EoS, which
are usually taken from the Lattice QCD calculation. Different EoS (e.g a crossover
transition between QGP and hadron gas vs. a first-order phase transition) will lead
to different behaviors of the simulated QGP[27, 28]. The comparison between exper-
imental data and model calculations employing different EoS can provide valuable
constrains on the EoS of the nuclear matter.

As the system expands and cools down, the late hadronic stage becomes too
dissipative for a fluid dynamic approach[29] and must be described microscopically.
The stage between the hadronization and kinetic freeze-out is usually simulated by
transport models [30, 31]. Transport models treat the microscopic substructure of the
colliding nuclei explicitly, i.e. the trajectories and interactions of all protons, neutrons
and newly created baryons and mesons.

The simulation of heavy-ion collisions is a complex and rapidly evolving field.
Currently, the hybrid model (consisting of initial conditions, hydrodynamic evolution,
and hadronic afterburner) is considered the most realistic approach for simulating
heavy-ion collisions[23, 32, 33] at the energies that the QGP is expected, although pure
transport models are also in use. However, no model currently incorporates all the
discussed details. Constrained by limited theoretical knowledge and computational
resources, each model typically focuses on the comprehensive simulation of specific
stages, or specific dynamic ingredients, in the space-time evolution of the heavy-ion
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Figure 1.5: Net-proton distributions for 0 5% centrality at AGS (Au+Au √
sNN =5

GeV, ybeam = 1.64), SPS (Pb+Pb√
sNN =17.2 GeV, ybeam = 2.91) and RHIC energies

(Au+Au √
sNN =62.4 GeV, ybeam = 4.2; Au+Au √

sNN =200 GeV, ybeam = 5.36).
The large-rapidity 200 GeV data points are preliminary. The beam rapidity yB at
each energy is indicated by the dashed lines. Figure taken from Ref.[34]

collision, depending on the targeted observable.

1.2.3 RHIC Beam Energy Scan Program

After the discovery of strongly coupled quark gluon plasma (sQGP) at RHIC, in order
to further explore the QCD phase diagram at finite baryon chemical potential, RHIC
conducted the Beam Energy Scan (BES) program[35, 2]. The idea is to dope the
QGP with an excess of quarks over antiquarks by colliding gold nuclei at lower and
lower energies to reach higher and higher µB[36, 2]. Figure 1.7 illustrates the phase
space covered by the BES program. The main physics goals of BES are: 1) further
confirm the evidence for the QGP; 2) search for the threshold of the QGP formation;
3) search for the critical point; 4) look for the first-order phase transition if it exists.

During 2010 and 2014, the first stage of the RHIC beam energy scan program
was carried out. Au+Au data were collected by the STAR experiment at six energies
(√sNN =7.7, 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV). Data analysis have revealed
promising results but the location of the critical point still cannot be pinpointed and
the existence of the first-order phase transition remains unknown [37]. The second
phase of the BES started in 2018 and successfully concluded in 2021. Multiple detector
upgrades were implemented at the STAR experiment for the BES-II data-taking. It
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√
sNN µB (MeV) Year Statistics (Millions)

62.4 70 2010 67
39 115 2010 130
27 155 2011 70
19.6 205 2011 36
14.5 260 2014 20
11.5 315 2010 12
7.7 420 2010 4

Table 1.1: An overview BES-I. The µB values are estimated from the systematics of
central collisions in Ref. [38].

√
sNN µB (MeV) Year Statistics (Millions)

27 155 2018 1000
19.6 205 2019 400
17.3 230 2021 250
14.5 260 2019 300
11.5 315 2020 230
9.1 370 2019+2020 160
7.7 420 2019+2021 100

Table 1.2: An overview BES-II. The µB values are estimated from the systematics of
central collisions in Ref. [38].

will be discussed in more details in Chapter 2. The data analysis on BES-II data is
ongoing. This thesis presents physics analyses utilizing the BES-II data. The details
of BES-I and BES-II are summarized in Table 1.2.3 and 1.2.3.

At BES energies, the model study encounters new challenges. As shown in Fig-
ure1.6, the colliding system is less boosted at lower collision energies. While the
thickness of the Lorentz contracted nuclei is almost negligible at √sNN =200 GeV, it
cannot be ignored at √sNN =19.6 GeV. Therefore, a three-dimensional initial state
is needed. At lower energies, a lot of evolution happens before nuclei have completely
pass through each other, and the pre-hydrodynamic stage can become as long as the
hydrodynamic stage itself. So the simulation of the pre-equilibrium stage becomes im-
portant. Furthermore, due to the baryon doping, non-zero baryon and electric charge
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Figure 1.6: Nucleon positions on the x − z plane for to different collision energies.
Figure taken from Ref.[39]

densities need to be taken into account. Therefore, the experimental measurements
at RHIC are extremely important for the heavy-ion community, as it offers valuable
information about the properties and evolution of the QGP at finite baryon chemical
potential.

1.3 Anisotropic flow
1.3.1 Overview

Anisotropic flow measures the momentum-space correlation of the final state particles
in the heavy-ion collisions. It has been particularly useful in extracting both the
QGP properties as well as nontrivial initial conditions[40, 22]. Anisotropic flow can
be characterized by the coefficients in the Fourier expansion of the azimuthal particle
distribution with respect to the reaction plane (Φ):

dN

d(ϕ− Φ)
=

1

2π
{1 +

∞∑
n=1

2vn cos [n(ϕ− Φ)]}, (1.3)

where the reaction plane(Φ) is the plane spanned by the impact parameter and the
beam axis. Figure 1.8 demonstrates different order of the flow component. The sec-
ond order flow(v2), also called the elliptic flow, originated in the elliptic shape of the
participant region in the heavy-ion collision. As shown in Figure 1.9, in non-central
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Figure 1.7: a sketch illustrating the phase space that the BES program and the fix-
target (FTX) program can probe. The black closed circles are current heavy-ion
experimental calculations of the chemical freeze-out temperature (T ), and baryon
chemical potential (µB) based on statistical model fits to the measured particle ra-
tios. The dashed curves show the estimated trajectories of the corresponding collision
energies.
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collisions, the overlapping region of two colliding nuclei has an almond shape. Due to
the higher pressure gradient along the short axis, more particles are squeezed out in
that direction, resulting in an anisotropic particle distribution in the transverse plane.
In other words, the spatial anisotropy of the system is converted to the momentum
anisotropy through the particle rescatterings during the rapid expansion of the sys-
tem, eventually giving rise to the elliptic flow[41, 42]. Therefore, v2 is sensitive to the
particle interactions at the early stage of the collision. In fact, a strong v2 is among
the first evidences that a strongly coupled matter was created at RHIC[43, 44]. The
third(v3) and higher order flow are usually attributed to the event-by-event fluctu-
ations of the participant region geometry[45]. However, recent studies have shown
that at lower collision energies (√sNN < 4 GeV), v3 can also come from the initial
collision geometry and is sensitive to the equation of state[46, 47]. The first order
flow(v1) describes the collective sideward motion (along the x axis) of the produced
particles and nuclear fragments in heavy-ion collisions. It is also referred as the di-
rected flow because it has “directions”. Unlike v2, v1 is not boost invariant around the
midrapidity, and it is an odd function of rapidity(y). In a simplified picture shown
by Figure 1.10, some nuclear fragments are deflected at the forward and backward
region, whereas produced particles are squeezed out from a tilted fireball in the par-
ticipant region. As a result, the particles can be pushed away from the beam axis
towards opposite directions at the large and small (pseudo)rapidity, leading to a sign
change of v1(η). More importantly, the asymmetry of the collision geometry on the
x − z plane causes the particles to move towards opposite directions at the positive
and negative (pseudo)rapidities, resulting in an odd v1(η). By definition, v1 > 0 when
⟨px⟩ > 0. As a convention at the STAR experiment, the impact parameter direction
(x) always point from the nucleus moving towards −z to the nucleus moving towards
z.

1.3.2 Measurement method

Experimentally, the reaction plane angle cannot be measured, and the event plane
(Ψ) is used as an approximation to the reaction plane. The reaction plane angle is
calculated by the azimuthal particle distribution:

Ψn =
1

n
arctan

∑
iwi sin (nϕi)∑
j wj cos (nϕj)

, (1.4)
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Figure 1.8: a sketch illustrating different order of the flow components.

Figure 1.9: a sketch illustrating the heavy-ion collision. The particle distribution
after the collision is anisotropic because the overlapping region of the two nuclei is
elliptic.
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Figure 1.10: a sketch illustrating the collision on the x−z plane. By definition, v1 > 0
when ⟨px⟩ > 0.

where the sums run over all the particles that are used to calculate the event plane.
This subgroup of particles is called the reference. In the flow measurement, the ref-
erence is chosen differently from the particles of interest (PoI) in order to exclude
self-correlations. The coefficient wi is the weight for particle i, where for odd har-
monics wi(−y) = −wi(y) due to the asymmetry of the collision with respect to the
midrapidity. The optimal choice for wi is to approximate vn(pT , y)[48]. Since both
v1(y) around the midrapidity and v2(pT ) are found to be linear functions, −y becomes
a common choice for a weight at the first order and pT becomes a common choice for
a weight at the second order. Experimentally, in order to remove acceptance corre-
lations from an imperfect detector, a ϕ weight will also be assigned to the reference
tracks to flatten the azimuthal particle distribution in the detector and the event
planes will be shifted to obtain an uniform dN

dΨn
distribution. Then the anisotropic

flow can be measured as:

vobs.n = ⟨cos [n(ϕi −Ψn)]⟩, (1.5)
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where the angle bracket denotes an average over all the particles in all the events.
Since finite multiplicity limits the estimation of the reaction plane, the observed vn
must be corrected by the event plane resolution:

Rn = ⟨cos [n(Ψn − Φ)]⟩, (1.6)

vn =
vobs.n

Rn

(1.7)

=
⟨cos [n(ϕi −Ψn + Φ− Φ)]⟩

⟨cos [n(Ψn − Φ)]⟩
(1.8)

=
⟨cos [n(ϕi − Φ)] cos [n(Ψn − Φ)]⟩

⟨cos [n(Ψn − Φ)]⟩
(1.9)

=
⟨cos [n(ϕi − Φ)]⟩⟨cos [n(Ψn − Φ)]⟩

⟨cos [n(Ψn − Φ)]⟩
(1.10)

= ⟨cos [n(ϕi − Φ)]⟩ (1.11)

The event plane resolution depends on the multiplicity and the flow of the reference
particles via the resolution parameter:

χ = vn
√
M, (1.12)

Rk(χ) =
√
π/2χe−χ2/2[I(k−1)/2(χ

2/2) + I(k+1)/2(χ
2/2)], (1.13)

where I is the modified Bessel function. To estimate the event plane resolution, we
can use two identical sub-events, one of which is the reference:

Rn,sub =
√
⟨cos [n(ΨA

n −ΨB
n )]⟩ (1.14)

=
√

⟨cos [n(ΨA
n − Φ−ΨB

n + Φ)]⟩ (1.15)
=

√
⟨cos [n(ΨA

n − Φ)] cos [n(ΨB
n − Φ)]⟩ (1.16)

=
√

⟨cos [n(ΨA
n − Φ)]⟩⟨cos [n(ΨB

n − Φ)]⟩ (1.17)
= ⟨cos [n(ΨA

n − Φ)]⟩. (1.18)

When it’s not feasible to find an identical subevent as the reference, a three sub-events
method can be used following a similar derivation:

RA
n =

√
⟨cos [n(ΨA

n −ΨB
n )]⟩⟨cos [n(ΨA

n −ΨC
n )]⟩

⟨cos [n(ΨB
n −ΨC

n )]⟩
(1.19)
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The most essential assumption for the event plane method to work is that all
the particles from the collision are correlated with each other only via the reaction
plane. This assumption gives rise to two problems in reality: the choice of refer-
ence and the non-flow correlations. Due to the lumpiness of the colliding nuclei, the
minor axis of the elliptic participant region doesn’t necessarily align with the im-
pact parameter direction (Figiure 1.11). As a result, all the particles are correlated
to each other through the participant plane instead of the reaction plane. There-
fore, |vn{EP}| is always greater than |vn{RP}| The difference between vn{EP} and
vn{RP} can be very prominent and a UrQMD study on this topic will be shown in
Chapter 5. As we enter the era of high-precision measurement, more subtle longi-
tudinal structure of the heavy-ion collision has been revealed. Measurement like the
longitudinal flow decorrelation has suggested the event plane angle might be differ-
ent at different (pseudo)rapidity[49, 50, 51, 52]. Model studies also showed that the
spectator plane differs from the participant plane[53]. Consequently, the anisotropic
flow measurement could be dependent on the choice of reference. Further studies are
needed to reach a definitive conclusion on this problem [54, 55, 56]. Another major
issue for the flow measurement is the non-flow correlations. Non-flow includes reso-
nance decays, jet or minijet fragmentation, among others[57, 58]. Common ways to
suppress the nonflow contributions include introducing a large (pseudo)rapidity gap
between the particles of interest and the reference, employing higher order cumulant
measurements[59], using event plane method with mixed harmonics[60](although later
on, people have realized Ψ2 is not a good approximation for Ψ1), and so on. Never-
theless, nonflow effects can only be suppressed to some extent and cannot be entirely
removed.

In practice, the event plane method can also be implemented using the flow vec-
tors, with the major difference lying in the correction for the detector effect. In this
approach, the flow vectors are recentered rather than shifting the event planes. While
the two approaches result in exactly the same flow values (when only the recentering
was applied in the traditional event plane method as shown by eq. 1.5, eq. 1.6 and
eq. 1.11), the associated statistical errors are slightly different. Additionally, a scaler
product method has been proposed to optimize the precision of the analysis[61]. Since
the Q vector needs to be measured event by event, it is not suitable for this anal-
ysis given the characteristics of the detector used. Therefore, it will not be further
discussed in this thesis.
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Figure 1.11: the definition of the Reaction Plane and Participant Plane coordinate
systems.
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1.4 Motivation for the directed flow measurement
Directed flow (v1) quantifies the sidewards deflection as a function of (pseudo)rapidity.
It is particularly interesting at BES energies, as it connects the longitudinal and
transverse dynamics, manifestly probing the three-dimensional nature of the sys-
tem’s evolution. Directed flow carries information on the very early stage of the
collision, especially at large η (in the fragmentation region), where it is believed to
be generated during the nuclear passage time (2R/γ ∼ 0.1fm/c)[62, 63]. It there-
fore probes the onset of bulk collective dynamics during thermalization, providing
valuable experimental guidance to models of the pre-equilibrium stage[35]. A review
on the directed flow measurements in nuclear collisions from AGS to LHC energies
can be found in [64]. At RHIC, directed flow was initially measured with charged
particles across a wide pseudorapidity range both by the STAR and the PHOBOS
experiment[65, 66, 67, 60, 60, 68, 69, 70]. However, no models have successfully re-
produced the measured v1(η) across the entire η range. Subsequently, directed flow
of identified particles around midrapidity has been extensively measured in various
collision systems at different energies by the STAR experiment[71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81]. One of the interesting observations is the sign change of proton
v1 at lower collision energies, the origin of which is still unknown and might relate
to the first order phase transition of the QCD matter (Figure 1.12 and 1.13). On
the theory side, considerable ongoing efforts have been dedicated to understanding
these experimental results[63, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Model
studies have indicated that directed flow is sensitive to the shear viscosity of the hot
QCD matter [95] (Figure 1.14). Furthermore, directed flow has demonstrated strong
constraining power on the initial baryon stopping and can serve as a probe for the
equation of state in heavy-ion collisions[96, 97, 98]. Currently, most model studies
focus on the midrapidity due to both the lack of experimental data at the forward re-
gion and an insufficient understanding of the particle production in the fragmentation
region (since it cannot be calculated by pQCD). However, past measurements have
indicated that the directed flow signal is most pronounced at the forward(backward)
(pseudo)rapidity. Therefore, any sensitivity to the initial state, hydrodynamic evolu-
tion, or the equation of state may be more evident at large (pseudo)rapidities. More-
over, at RHIC BES energies, nuclear fragments can significantly influence particle
production across the entire (pseudo)rapidity region. Consequently, any dynamical
models must treat the full three-dimensional system in detail. The measurement of
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directed flow over a wide pseudorapidity range will offer valuable constraints on the
three-dimensional initial state and evolution of the colliding system.

In 2018, the Event Plane Detector (EPD, 2.1 < |η| < 5.1) was installed in STAR
and used for the Beam Energy Scan phase-II (BES-II) data taking. The combina-
tion of EPD and high-statistics BES-II data enables us to extend the directed flow
measurement to the forward and backward pseudorapidity with much smaller un-
certainties. High-precision measurements might also reveal finer structures of the
colliding system, deepening our understanding of the heavy-ion collisions.
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Figure 1.12: directed flow of protons and π− versus rapidity for three centralities in
Au+Au collisions at √

sNN =7.7, 11.5, 19.6, 27, 39 GeV. Only statistical errors are
plotted. Figure taken from Ref.[72]
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Figure 1.13: directed flow of proton, anti-proton, π+ and π− versus rapidity for 10 40%
centrality in Au+Au collisions at √sNN =7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV. Only
statistical errors are plotted. Figure taken from Ref.[72]
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Figure 1.14: Directed flow of pions for different values of η/s simulated by the ECHO-
QGP model at √sNN =200 GeV. The STAR data points are measured with charged
particles versus pseudorapidity at √sNN =200 GeV. Figure taken from Ref.[95]
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Chapter 2
Experimental Setup

2.1 The RHIC complex
The Relativistic Heavy Ion Collider (RHIC) is the first and one of only two operating
heavy-ion colliders, and the only spin-polarized proton collider ever built. Figure 2.1
shows a sketch of it with the key infrastructures labeled. RHIC has two independent
storage rings (“blue” ring and “yellow” ring). Figure 2.2 shows a detailed sketch
of the RHIC rings. The RHIC rings are hexagonally shaped with curved edges, in
which particles are deflected and focused by superconducting magnets. The “blue”
and “yellow” ring cross at six interaction points (IP), allowing the particles to col-
lide. Detectors are built around the IPs in order to record collision events. As of
2023, two experiments are running at RHIC: sPHENIX (the successor to PHENIX)
and STAR. All the research in this thesis was done at the STAR experiment. Three
smaller experiments were also conducted at RHIC. The PHOBOS experiment(1999-
2005) is tailored for the bulk particle multiplicity measurement, it consists of many
silicon detectors and has the largest pseudorapidity (η) coverage of all detectors. The
BRAHMS experiment (2000-2006) is designed for the momentum spectrum measure-
ment. The PP2PP experiment is now part of the STAR experiment, it aims to study
the spin dependence in proton-proton elastic scatterings. Various particle species
were collided at RHIC at different energies. Since this thesis focuses on the BES
program, let’s take a look at the Au+Au collisions.

Before the gold nuclei reach the RHIC storage rings, they undergo several stages
of boosters. The first stage is the electron beam ion source (EBIS). The gold nuclei
leave EBIS with the kinetic energy of E = 2AMeV and the electric charge of Q = +32

(32 of 79 electrons are stripped from the gold atom). Then, they are injected into
the Booster synchrotron and get accelerated to E = 100A MeV. In the meanwhile,
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Figure 2.1: An aerial view of the Relativistic Heavy Ion Collider (RHIC), a 2.4
mile circumference particle collider at Brookhaven National Laboratory. Several key
infrastructures are labelled. Figure taken from [99]

Figure 2.2: A sketch of the RHIC storage rings. Several experiments are located at
the interaction points (IPs). As of 2023, only sPHENIX and STAR are running.
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Figure 2.3: An illustration of the STAR detector with labeled sub-systems: end-cap
Electromagnetic Calorimeter (EEMC), Magnet, Muon Telescope Detector (MTD),
Barrel Electromagnetic Calorimeter (BEMC), Time Projection Chamber (TPC),
Time of Flight Detector (TOF), Vertex Position Detector (VPD), inner TPC (iTPC),
end-cap Time of Flight Detector (eTOF), Event Plane Detector(EPD). The zero de-
gree calorimeter (ZDC) is out of the frame. Those in red are installed for BES-II.

their electric charges become Q = +77. Next, the gold nuclei are injected into the
Alternating Gradient Synchrotron (AGS), where they reach E = 8.86A GeV and
Q = +79. Finally, the gold nuclei get transferred to the RHIC storage rings through
the AGS-to-RHIC Transfer Line (AtR) and undergo further acceleration within the
RHIC rings.

2.2 The STAR detector
The STAR (Solenoidal Tracker at RHIC) detector is one of the experiments at
RHIC. Figure2.3 shows an illustration of the STAR detector with labeled sub-systems:
end-cap Electromagnetic Calorimeter (EEMC), Magnet, Muon Telescope Detector
(MTD), Barrel Electromagnetic Calorimeter (BEMC), Time Projection Chamber
(TPC), Time of Flight Detector (TOF), Vertex Position Detector (VPD), inner TPC
(iTPC), end-cap Time of Flight Detector (eTOF), Event Plane Detector (EPD). The
zero degree calorimeter (ZDC) is out of the frame and not plotted. The STAR magnet
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Figure 2.4: A sketch of an event recorded by the TPC and the EPD

provides a magnetic field of 0.5 Tesla for the TPC. For the BES-II data-taking, STAR
went through several detector upgrades including the installation of the iTPC, eTOF
and EPD. The iTPC increases the η acceptance of the TPC from |η| < 1.0 to |η| < 1.5.
It also provides better acceptance for tracks with low transverse momentum(pT ), as
well as better resolution in momentum and energy loss (dE/dx) for tracks of all mo-
menta. The eTOF enables particle identification(PID) of high pTparticles to |η| < 1.6.
The EPD offers excellent event plane resolution at the forward and backward η. The
The main detectors used in this thesis are the TPC and EPD. Figure 2.4 demonstrates
an event recorded by the STAR TPC and EPD.

2.2.1 The Time Projection Chamber

The STAR TPC is 4.2 m long and 4 m in diameter. It is used to detect charged
particles within |η| < 1, with a full 2π azimuthal coverage and a transverse momentum
lower limit of pT > 0.15 GeV/c [100]. The TPC is also used to reconstruct the primary
vertex position of each event along the beam direction (Vz) and its radial distance from
the beam axis (Vr). Figure 2.5 shows a sketch of the STAR TPC. TPC is filled with
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gas (90% Argonne and 10% CH4)and a homogeneous electric field is applied along the
axis of the cylinder. When a charged particle goes through the TPC, it ionizes the
atoms of the gas along its trajectory. The electrons produced by the ionization drift
in the chamber towards the anode plane and are detected by the readout electronics.
The longitudinal position of the track can be reconstructed from the drift time, i.e.
the angle (θ) between the track momentum and the beam axis . Additionally, a high
magnetic field parallel to the electric field is used to “bend” the particle trajectory
on a spiral track via the Lorentz force. Then the pTof the track is:

pT = |q|Br, (2.1)

where q is the electric charge, B is the magnetic field and r is the curvature of the
track. The sign of the electric charge can be known from the direction of the curvature.
With pTand θ, the momentum of the track can be calculated. Accurate measurement
of track momentum relies on the drift velocity. Therefore, a laser calibration system
is implemented at STAR to measure the drift velocity. TPC can also identify particle
species by measuring the dE/dx with the readout pad rows. The velocity of the
particles can be derived from the measured dE/dx using the Bethe-Bloch formula[10].
With access to the velocity and momentum, the particle mass can be calculated,
allowing for the identification of particle species.

2.2.2 The Event Plane Detector

The STAR EPD consists of two segmented scintillator wheels located at ±3.75 m
from the center of the TPC along the beam direction (Figure 2.4). Each EPD wheel
is composed of twelve “supersectors” that subtend 30 degrees in azimuth and each
supersector is divided into 31 tiles [101]. When a minimum ionization particle (MIP)
traverses an EPD tile, the EPD tile absorbs its energy and emits photons. In the
meanwhile, the optical fibers wired in the EPD tile transport the light to a silicon
photomultiplier (SiPM). Then signals from the SiPM are amplified and sent to the
STAR digitizing and acquisition system and eventually get recorded as ADC values.
The peusorapidity and azimuthal angle of each EPD tile are determined by a straight
line between the primary vertex and a random point on the tile (Figure 2.6). When
the primary vertex is at the origin of the TPC, the EPD acceptance is 2.1 < |η| < 5.1.
Figure 2.7 shows the η coverage of each EPD ring as a function of VZ . More details
about EPD will be discussed in Chapter 3.3.
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Figure 2.5: A diagram of the STAR Time Projection Chamber (TPC), Figure taken
from [100]

Figure 2.6: the pseudorapidity (η) range of a EPD tile depends on the primary vertex
position. The EPD acceptance is 2.1 < |η| < 5.1 when (Vx, Vy, Vz) = (0, 0, 0).
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Figure 2.7: The η coverage of each EPD ring as a function of VZ . Figure taken from
Mike Lisa’s drupal page
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Chapter 3
Measurement of Directed Flow

3.1 Data set and event selections
3.1.1 Data set

This analysis is conducted with Au+Au √
sNN =27 GeV data collected in 2018 and

Au+Au √
sNN =19.6 GeV data collected in 2019 as part of the BES-II program. The

data sets are summarized in Table 3.1.1.

3.1.2 Centrality definition

The centrality classes are defined based on the charged-particle multiplicity (Nch)
distribution in the TPC within the pseudorapidity window of |η| < 0.5. Such dis-
tributions are fit to Glauber Monte Carlo (GMC) simulations after correcting for
the luminosity and acceptance variation as a function of Vz. The detailed proce-
dure to obtain the simulated multiplicity using the GMC is similar to that described
in Ref. [102]. Measurements from seven centralities are presented in this thesis:
0 ∼ 5%, 5 ∼ 10%, 10 ∼ 20%, 20 ∼ 30%, 30 ∼ 40%, 40 ∼ 50%, 50 ∼ 60%. Larger cen-
trality corresponds to more peripheral collision; while smaller centrality corresponds
to more central collisions.

√
sNN Production Tag Triggers

19.6 P21ic 640001, 640011, 640021, 640031, 640041, 640051
27 P19ib 610001, 610011, 610021, 610031, 610041, 610051

Table 3.1: Data sets at √sNN =19.6 and 27 GeV
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3.1.3 Event level cuts

Bad runs are removed using the StRefMultCorr class. After QA for the EPD, one
more bad run was identified and removed at √sNN =19.6 GeV: run 20088001. Then,
following event level cuts were applied:

• Vertex selection cut: |VZ | < 40 cm, |Vr| < 1.0 cm, DCA < 3 cm.

• Pile-up events removal: STAR collected minimum-bias events by requiring the
coincidence of signals from the Zero Degree Calorimeters (ZDCs), on either
side of the interaction region, at the rate of 0.5-2 kHz. By excluding outliers
in the correlation between the number of TPC tracks and the number of those
tracks that match with a hit in the Time of Flight (TOF) detector, we are able
to detect out-of-time pile-up in roughly 0.02% of these minimum-bias events.
This is possible since the TOF is a fast detector and does not detect out-of-time
pile-up events, unlike the TPC.

• Ultra-peripheral events removal: removed events with centrality greater than
80%.

After all the cuts, 320 M events are left and used for the analysis at √sNN =27
GeV, and 260 M events at √sNN =19.6 GeV.

3.1.4 Run regions

All the track weighting and Ψ shifting are conducted run-region by run-region at
√
sNN =27 GeV. There are 14 run regions: [0, 19131037, 19135016, 19137041, 19139063,

19140030, 19141030, 19144012, 19144033, 19145034, 19147021, 19147048, 19155057,
19158020, 19268002]. All the track weighting and Ψ shifting are conducted day by
day at √sNN =19.6 GeV.

3.2 Event plane and its resolution
Since EPD cannot measure the Q vectors of each event, the event plane method was
used in this analysis. The measurements of anisotropic flow are associated with non-
collective or nonflow correlations from various sources of long and short range two- and
many-particle correlations. They include the momentum conservation effect, quantum
statistics, resonance decays, jet or minijet fragmentation, among others [57, 48, 58].
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Therefore, the acceptance of reference particles used to determine Ψn needs to be
carefully selected to suppress those nonflow effects. To remove acceptance correlation
from an imperfect detector, the event plane distribution needs to be flattened[57, 48].
Two treatments were applied for this purpose: ϕ weighting and Ψn shifting. All the
weightings used will be discussed in details. The formula used for Ψn shifting can be
found in[57, 48].

3.2.1 Momentum conservation effect

In this analysis, particles in the Time Projection Chamber are used as the reference to
suppress the momentum conservation effect [58]. Flow measures the global collective
correlations among all the produced particles and nuclear fragments. However, there
might be some fake correlations simply because the total momentum is conserved
in the collisions. Figure 3.1 is a good demonstration of the momentum conservation
effect. It shows v1(η) in |η| < 1.0 measured with three different references: East EPD,
West EPD and both sides of the EPD. While v1 at the midrapidity should be zero,
it is greater than zero when measured w.r.t. ΨEPDWest

1 , and it is smaller than zero
when measured w.r.t. ΨEPDEest

1 . The v1(η) curve becomes an odd function when both
sides of EPD are used to reconstruct Ψ1. The same analysis with UrQMD showed
this “shift” of v1(η) with the same order of magnitude and signs.

It was shown in [58] that the order of magnitude of the correlation due to mo-
mentum conservation is:

⟨cos (ϕ− Φ)⟩m.c. ∼ − pT√
N⟨p2T ⟩

f, (3.1)

where f is a dimensionless quantity given by

f = ⟨wpT ⟩Q

√
M

⟨w2⟩QN⟨p2T ⟩
, (3.2)

and the subscript Q refers to those M particles used for the Q-vector. N is the total
number of particles in the collision. All effects of momentum conservation disappear
if the parameter f defined in Eq. 3.2 vanishes, which occurs if ⟨wpT ⟩ = 0. Since w
is usually an odd function of η (otherwise the symmetry of the collisions will lead to
a zero resolution), ⟨wpT ⟩ = 0 vanishes if the detector acceptance is symmetric with
respect to the midrapidity. Therefore, TPC was chosen as the reference in spite of
the fact that it has lower event plane resolution compared to EPD.
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Figure 3.1: v1(η) in |η| < 1.0 measured with ΨEPDWest
1 , ΨEPDEest

1 and ΨBothEPD
1 re-

spectively. The fact that v1(η) is only an odd function when a symmetric reference
around the midrapidity was used (both sides of EPD) is a good demonstration of the
momentum conservation effect.

√
sNN Tracks nHitsFit pT (GeV/c) |η|

19.6 Primary > 15 [0.15, 2.0] <1.0
27 Primary > 15 [0.15, 2.0] <0.8

Table 3.2: Cuts for TPC tracks

3.2.2 TPC track cuts and weightings

The cuts applied to the TPC tracks are summarized in Table 3.2.2. The η cut was
determined based on the detector performance in each run. During the RHIC run in
2018, one of the 24 TPC sectors was used to commission the inner TPC (iTPC) sector
and the data from this sector were not used for physics analyses. The loss of tracks
due to the iTPC sector leads to a region of depletion in the η − ϕ acceptance map.
Commonly, such issues are resolved by implementing a ϕ-weighting. Nevertheless,
when the collision vertex is displaced considerably from the center of the TPC, for
instance, Vz in the vicinity of -40 cm and η close to -1, the regions of depletion are
too prominent to be corrected by the ϕ weighting. Therefore, we only used tracks
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within |η| < 0.8 at √
sNN =27 GeV. In run19, there is no such issue, so, we used

tracks within |η| < 1.0 at √sNN =19.6 GeV.
The ϕ weights are calculated with the following binning: 9 centrality bins (only

used at √sNN =27 GeV); positive and negative charges; 20 variable pTbins (11 even
bins in pT∈ [0.15, 1.25] GeV/c and one large bin for pT∈ [1.25, 2.0] GeV/c); 16 VZ
bins in [-40,40] cm.

As mentioned in Section 3.2.1, the reference should be symmetric around the
mid-rapdity in order to suppress the momentum conservation effect. However, the
dN
dη

distributions of TPC tracks are by nature not symmetric around the mid-rapidity
when VZ ̸= 0. Therefore, we apply an η weighting to make the dN

dη
symmetric, the

weights are calculated with the following binning: 9 centrality bins; positive and neg-
ative charges; 12 variable pT bins in [0.15,2.0] GeV/c (11 even bins in pT∈ [0.15, 1.25]

GeV/c and one large bin for pT∈ [1.25, 2.0] GeV/c); 16 VZ bins in [-40,40] cm.
The event plane resolution is proportional to vi

√
M [57], where vi is the ith order

flow and M is the multiplicity of the particles used to determine the event plane.
Since v1(η) in |η| < 1.0 is almost a linear function with negative slope, we just apply
a weight of w = −η to every TPC track in order to maximize the TPC event plane
resolution. Without this weight, the asymmetry of the system would result in a
resolution of zero.

In summary, the following three weights are assigned to TPC tracks; the first two
weights are there to correct for the detector acceptance effects and the third weight
is for maximizing the event plane resolution.

1. ϕ weights to make the dN
dϕ

distribution uniform;

2. η weights to make the dN
dη

distribution symmetric;

3. w = −η to maximize the TPC event plane resolution.

3.2.3 Event Planes from EPD

The event plane from the EPD is not directly used in this analysis, but it is used to
determine the event plane resolution of TPC. The EPD event plane is calculated as
follows:

ΨEPD
1 = arctan

∑
tilekWk sinϕk∑
tilekWk cosϕk

(3.3)
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where the sum runs over all the EPD tiles. The weight for each EPD tile is consist
of two parts, the tile weight (wt) and the η weight (wη):

Wk = wk,t × wk,η (3.4)

The tile weight depends on the nMIP of each tile:

wk,t =


0 nMIPk < threshold

max nMIPk > threshold

nMIPk otherwise

(3.5)

In this analysis, the threshold is chosen to be 0.3 and the max is chosen to be 2.
At √

sNN = 27(19.6) GeV, the beam rapidity (ybeam = 3.4(3.0)) lies in the ac-
ceptance of the EPD, therefore, v1(η) changes sign in the EPD acceptance. Similar
to the TPC case, in order to maximize the event plane resolution, we need to assign
bigger weights to the η regions with bigger v1 and more importantly, assign negative
weights to the η regions with negative v1 . A natural choice will be using the v1(η) as
the η weight. First of all, we roughly calculate the v1(η) in EPD, using the truncated
nMIP, with respect to the TPC event plane. Then we fit the data points with a
polynomial function and use this function as the η weight for the EPD:

wk,η = v1{ΨTPC
1 }(ηk). (3.6)

3.2.4 Event Plane resolution of TPC

The resolution of the TPC event plane is calculated by the “three sub-event method”:

RTPC
1 =

√
⟨cos (ΨTPC

1 −ΨEPDE
1 )⟩⟨cos (ΨTPC

1 −ΨEPDW
1 )⟩

⟨cos (ΨEPDE
1 −ΨEPDW

1 )⟩
. (3.7)

Figure 3.2 shows the ΨTPC
1 resolution as a function of centrality. The resolution ranges

between 0.02 and 0.08, peaking around 20− 30% centrality.

3.3 Averaged number of MIPs per EPD tile
As a pre-shower scintillator detector, the EPD cannot reconstruct charged tracks
like the TPC does. But, fortunately, the number of MIPs traversing each EPD
tile averaged over all the events can be probabilistically determined. As a recap,
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Figure 3.2: ΨTPC
1 resolution as a function of centrality for 16 Vz bins; the resolution

is calculated by the three sub event method.
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Figure 3.3: The black, red, green, purple curves correspond to the 1,2,3,4-MIP
Landau respectively. The blue curve shows what the EPD spectrum is like when 30%
of the events are 1-MIP event, 5% of the events are 2-MIP event, 0.4% of the events
are 3-MIP event, 0.3% of the events are 4-MIP event and the rest are 0-MIP event.
This plot is just a sketch for the demonstration purpose, it is not made from real
data.

the working principle of the EPD is as follows: when a minimum ionizing particle
(MIP) traverses an EPD tile, the tile absorbs part of its energy and emits photons.
The optical fibers in the EPD tile transport the light to a silicon photomultiplier
(SiPM). Signals from the SiPM are then amplified and sent to the STAR digitizing
and acquisition system and are eventually recorded as ADC values.

Since the energy loss of MIPs follows a Landau distribution, the ADC spectra of
the EPD tiles also follow Landau distributions (with some background noise). The
Landau distribution only has two parameters: the most probable value (MPV) and
the width over MPV (WID/MPV). In principle, the WID/MPV only depends on the
material and thickness of the detector; and the ADC values are calibrated in a way
that MPV is normalized to unity for the Landau distribution corresponding to a single
MIP traversing the EPD tile in an event. Fig. 3.3 demonstrates how an ideal EPD
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spectrum should look when different numbers of MIPs traverse an EPD tile. When a
single MIP traverses the EPD tile in an event, the EPD spectrum looks like the black
curve (1-MIP Landau). When two MIPs traverse the EPD tile in an event, the EPD
spectrum looks like the red curve (2-MIP Landau), which is simply the convolution of
two 1-MIP Landau distributions. The 3-MIP and 4-MIP Landau look like the green
and purple curves, respectively. In general, the N-MIP Landau is the convolution of
(N-1)-MIP Landau with the 1-MIP Landau (N ̸= 1).

In reality, an EPD tile gets hit by varying numbers of MIPs (minimum ionizing
particles) in different events. The resulting EPD spectrum is a weighted sum of the
1, 2, 3, . . . , N -MIP Landaus, with the weights representing the probabilities of 1,
2, 3, . . . , N -MIP events. This spectrum is illustrated by the blue curve in Fig. 3.3.
Therefore, the distribution of calibrated ADCs can be described by the equation:

dN
d(Calibrated ADC) =

N∑
i=1

MiLi(Calibrated ADC), (3.8)

where Mi represent the probability of i-MIP event and Li represents the i-MIP Lan-
dau:

Li =

Landau(MPV,WID/MPV), if i = 1;

Li−1 ∗ L1, otherwise.
(3.9)

Since the mean of the Landau distribution is undefined, the law of large number
doesn’t apply. Therefore, the mean of calibrated ADCs will not necessarily get close
to the averaged number of MIPs traversing an EPD tile as more data gets collected.
Instead, the probabilities of 1,2,3 . . . , N -MIP events must be derived by fitting the
spectrum shown in Fig. 3.3 with the Equation 3.8. Then the averaged MIPs can be
calculated as follows:

N =
i=4∑
i=1

Mi × i. (3.10)

The corresponding uncertainty on N is calculated by the covariance matrix:

σ2 = kΣk⊤ (3.11)

where Σ is the covariance matrix of the fitting parameters and k = (1, 2, 3, 4, 0, 0).
As shown in Fig. 2.6, the pseudorapidity coverage of each EPD tile depends on Vz.

So, this analysis is carried out in 16 Vz bins in [−40, 40] cm. The pseudorapidity and
ϕ of each EPD tile is determined by a straight line between the primary vertex and a
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random point on the EPD tile. Fig. 3.4 demonstrates the procedure of extracting v1
of ring 16 on the east EPD for 20 ∼ 30% centrality and −5 <VZ< 0 cm. First of all,
for each tile on ring 16, we make the calibrated ADC spectrum for each (ϕ−ΨTPC

1 ) bin
and apply the fit. Fig. 3.4 (a) is made from events in which the difference between the
ϕ of tile 1 and ΨTPC

1 is between −π and −11
12
π. Then, the dN/d(ϕ−ΨTPC

1 ) distribution
for a single tile can be calculated by Eq. 3.10. Next, we take the average of all the
good tiles on ring 16 and obtain the dN/d(ϕ−ΨTPC

1 ) distribution for the whole ring
as shown in Fig. 3.4 (b).

3.4 Extraction of v1
After obtaining the azimuthal particle distributions, we can extract the raw v1 by
fitting them with Fourier expansions:

dN

d(ϕ−ΨTPC
1 )

= k{1 + 2× v1 × cos(ϕ−ΨTPC
1 ) + 2× v2 × cos[2(ϕ−ΨTPC

1 )]}, (3.12)

the higher orders are left out. Then, we correct the raw v1 with the event plane
resolution measured in Chapter 3.2:

vmeasured
1 =

v1
R(1)

. (3.13)

Fig. 3.5(a) shows v1(η) after the resolution correction for 16 VZ bins for 20 ∼ 30%

centrality. The v1 obtained from Fig. 3.4(b) only corresponds to one data point in
Fig. 3.5(a). As a sanity check, we fit all the data points with a smooth curve and
calculate the normalized residuals (shown by the lower panel of Fig. 3.5(a)):

ri =
yi − f(xi)

σi
, (3.14)

where f(x) is the fitting function and σi is the error bar associated with the data point.
The normalized residuals follow a Gaussian distribution of σ ∼ 1.08 (Fig. 3.5(b)),
which indicates that the fluctuations and error bars on the data points are reasonable.
As for the statistical error on the x axis, it is calculated as the standard deviation
over mean (σ/

√
N) of all the η values for a specific EPD ring in all the events.

In order to better present the final results, we group every 16 v1 points along η sim-
ply by taking the average of the 16 v1 values and 16 η values (Figure 3.6). The group
of 16 points might have contributions from different EPD rings especially at small
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Figure 3.4: (a): the calibrated ADC spectra (blue, largely obscured by the red curve)
for tile 1 at ring 16 on the east EPD (shown by the orange area on the middle
right EPD sketch) obtained from events with (ϕ − Ψ1) ∈ [−π,−11

12
π], -5<VZ<0 cm,

and 20 ∼ 30% centrality. The shaded areas represent the expected calibrated ADC
spectra when 1, 2, 3, 4 minimum ionization particles (MIPs) traverse an EPD tile. The
histogram is fitted by the weighted sum of these four distributions (red curve) using
the weights (Mi) as the fitting parameters. (b): the dN/d(ϕ−ΨTPC

1 ) distribution for
ring 16 (shown by the orange area on the upper right EPD sketch). Each point is
obtained by fitting multiple calibrated ADC spectra. The leftmost point is calculated
from the calibrated ADC spectra of 24 tiles on ring 16 including the one shown in
(a).
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|η|, which again shows the importance of measuring v1(η) in small VZ bins instead
of using a wide VZ range (Figure 4.6).The formulas for calculating the uncertainties
after the combination can be found in Chapter 4.

3.5 Correction for the STAR material effect
Since EPD sit at the far ends of the STAR detector, approximately half of the parti-
cles it detects originate from the interactions between the primary particles and the
materials within the detector. These particles can significantly impact the measured
v1. In order to rectify this effect, an iterative process, as illustrated by the flow chart
in Figure 3.7, was conducted.

The core of this correction process lies in the accurate simulation of all the matters
within the STAR detector and their interactions with various particles. This includes
each sub-detector system, the beam pipe, the supporting structures, etc. This simula-
tion was achieved by GEANT3 (GEometry ANd Tracking) [103], a software designed to
describe the passage of particles through matter. Figure 3.8 shows several radiation
plots generated with the GEANT3 simulation. Each plot displays all the decaying and
scattering vertices as particles travel through STAR. All the major components of
the STAR detector are visible, which suggests the detector geometries in the GEANT3
simulation were properly implemented (STAR geometry tag ”y2018a”, ”epdDb”).

Next, we need to pass some “primary” particles to GEANT3, get the corresponding
“EPD hits” and measure their v1. Evidently, the distribution and composition of the
input particles will influence the output v1. Therefore, our goal is to find the input
particle distribution that can reproduce the measured v1(η). Then, in principle, the
v1(η) of input particles is what we are interested in: v1(η) of the primary particles
without the influence from the STAR materials.

In this analysis, HIJING[104] was chosen as the event generator due to its efficiency
in terms of computation speed. About 45000 HIJING events in Au+Au collisions at
√
sNN =200 GeV were generated. Since different particles interact with matters

differently, it is important to employ realistic particle constituents. Figure 3.9,3.10,
3.11, 3.12 show the particle composition of the HIJING tracks. Most primary particles
coming from the collisions before decaying are pions, followed by protons and kaons,
which is consistent with experimental observations.

As for the particle distribution, the yield (dN
dη

) and azimuthal distribution of the
HIJING tracks can be tuned to any desired shape by weighting. It will not influence
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Figure 3.5: v1(η) for 16 VZ bins between −40 and 40 cm, before correcting for the
influence from the STAR material effect. All the data points are fitted by a smooth
curve and the normalized residuals (residuals divided by error bars) follow a Gaussian
distribution of σ ∼ 1.08, which indicates the fluctuations and error bars on the data
points are reasonable.
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Figure 3.6: v1(η) after combining sixteen VZ bins
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Figure 3.7: Flowchart for correcting for the STAR material effect.
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Figure 3.8: Radiation plots simulated by HIJING+GEANT3. The upper row displays
vertices from events with VZ ranging from -45 to -35 cm, while the lower row displays
vertices from events with VZ ranging from 35 to 45 cm. The same set of plots is
presented in two different scales to accentuate different structures: the plots on the
left, with the z-axes spanning [0, 550], highlight the positions of the primary vertices.
Meanwhile, the plots on the right, with the z-axes spanning [0, 15], showcase the lo-
cations of sub-detector systems, the beam pipe, and the supporting structures within
the STAR detector and these components are labeled in the upper right plot. The
radiation plot serves as a valuable cross-check to verify the accuracy of the GEANT3
simulation. In this case, the GEANT3 simulation has successfully replicated all the
major structures within the experimental setup.
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Figure 3.9: HIJING particles before decaying.

Figure 3.10: HIJING particles after decaying.
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Figure 3.11: Parent HIJING tracks that cause EPD hits in the GEANT3 simulation
(through scattering or directly). All the EPD hits are traced back to the parent
tracks in HIJING, i.e. if a HIJING particle decays into several daughters and each of
them causes a EPD hit (through scattering or directly), then this parent particle will
be counted multiple times.

48



Figure 3.12: All the HIJING particles that cause EPD hits in the GEANT3 simulation
(through scattering or directly). All the EPD hits are traced back to a HIJING track,
i.e. if the hit is caused by a decayed daughter (through scattering or directly), the
daughter particle is counted instead of further tracing back to the its parent track.

the accuracy of this correction process as long as the same weights are simultaneously
assigned to the HIJING tracks and the associated EPD hits (if there is any). Therefore,
although these particles are generated at √

sNN =200 GeV, they can be used for
corrections at all the other energies, too. Since primary particles out of the EPD
acceptance can result in EPD hits through decaying and scattering, and the particle
interactions depend on momenta, dN

dη
and v1(pT ) are important input parameters for

this iterative process, too. The particle distribution is tuned as follows, note all the
weights need to be assigned both to the HIJING tracks and the associated EPD hits
(if there is any).

• Yield: the dN
dη

measured from the unfolding analysis by Mate Csanad (STAR
preliminary results) are used.

wyield(ηi) =
dNSTAR

dη
(ηi)/

dNHIJING

dη
(ηi) (3.15)

• Azimuthal distribution: the HIJING tracks are isotropically distributed in the
azimuthal direction, leading to zero anisotropic flows. We can adjust the az-
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imuthal distribution by the following weight:

wazimuthal(ηi, ϕi) = 1 + 2× vinput1 (ηi)× cos (ϕi − RP). (3.16)

If a v1(pT ) = k · √pT relation needs to be implemented, then:

wazimuthal(ηi, ϕi, pT i) = 1 + 2× wpT (pT i, ηi)× vinput1 (ηi)× cos (ϕi − RP), (3.17)

where

wpT (pT i, ηi) =


√
pT

⟨√pT ⟩ηi
, if

√
pT

⟨√pT ⟩ηi
× |vinput1 (ηi)| < 0.5,

0.5

|vinput1 (ηi)|
, if

√
pT

⟨√pT ⟩ηi
× |vinput1 (ηi)| > 0.5.

(3.18)

If a v1(pT ) = k · p2T relation needs to be implemented, then:

wazimuthal(ηi, ϕi, pT i) = 1 + 2× wpT (pT i, ηi)× vinput1 (ηi)× cos (ϕi − RP), (3.19)

where

wpT (pT i, ηi) =


p2T

⟨p2T ⟩ηi
, if

p2T
⟨p2T ⟩ηi

× |vinput1 (ηi)| < 0.5,

0.5

|vinput1 (ηi)|
, if

p2T
⟨p2T ⟩ηi

× |vinput1 (ηi)| > 0.5.
(3.20)

After setting dN
dη

v1(η) (and v1(pT ) if needed), we can start the iterative process
on v1(η). Figure 3.13, 3.14, 3.15, 3.16 show an example for 10 ∼ 40% centrality
at √sNN =27 GeV. Since the primary vertex position influences how much primary
particles interact with the matters within the detector, the HIJING+GEANT3 simulation
was conducted in nine different VZ bins. The output v1(η) data points are combined
every nine points along the η direction and then compared with the measured v1(η).
The iteration stops at the fourth iteration and the correction factors from the third
iteration will be used to rectify the STAR material effect.

Finally, here are a few notes on the iterative correction procedure:

1. only v1(η) changes during the iteration.

2. The real v1(pT ) and dN
dη

are unknown and cannot be directly measured due to
the limitation of our detector. We took our best guess and vary the input v1(pT )
and dN

dη
as systematic checks (see Chapter 4).

3. Although the measured v1(η) has discrete data points, the input v1(η), v1(pT )
and dN

dη
need to be continuous functions in η ∈ [−6, 6].
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Figure 3.13: Example of the iterative correction process for 10 ∼ 40% centrality, first
iteration.

Figure 3.14: Example of the iterative correction process for 10 ∼ 40% centrality,
second iteration.
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Figure 3.15: Example of the iterative correction process for 10 ∼ 40% centrality, third
iteration.

Figure 3.16: Example of the iterative correction process for 10 ∼ 40% centrality,
fourth iteration. Since the χ2/N doesn’t keep decreasing, the iteration stops.
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Figure 3.17: The correction factors from the third iteration will be used to correct
for the STAR material effect.
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Chapter 4
Systematic Uncertainties

“Systematic effects is a general category which includes effects such as
background, selection bias, scanning efficiency, energy resolution, angle
resolution, variation of counter efficiency with beam position and energy,
dead time, etc. The uncertainty in the estimation of such a systematic
effect is called a systematic error.”

-Jay Orear

“Any uncertainty in the process whereby your raw data is converted into
a published result is a systematic error.”

-Roger Barlow

4.1 Barlow’s method
The estimation of systematic uncertainties2 in this analysis follows Barlow’s method[105].
It consists of two parts:1) evaluation of systematic effects; 2) systematic checks. In
both cases, we vary some parameters and see what happens to the results. But the
expectations and how they are handled afterwards are completely different.

Systematic effects arise from the uncertainties associated with specific parameters
in the analysis. For example, uncertainty in efficiency, uncertainty in MC tuning
numbers, etc. When we vary those parameters, we expect the analysis results to
change and we usually know the extent to which the parameters should be varied. In
principle, we could sample a parameter a lot of times from a Gaussian distribution
given its value and uncertainty and take the RMS of the analysis results as the

2Systematic uncertainties are sometimes referred as systematic errors. However, the term ’error’
can be misleading, as it implies a mistake, whereas, in reality, it just reflects our lack of precise
knowledge in some aspects.
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Figure 4.1: Flow chart for demonstrating Barlow’s rule and how the systematic error
is calculated.

systematic uncertainty associated with that particular systematic effect. However,
there are instances where the “parameter” is a function and we are uncertain about
its exact functional form, making it impractical to sample it. Or there are only
limited variations that we can make given the experimental setup. In such cases, we
usually vary the parameter once and assume the analysis results will follow a uniform
distribution if we could try out more values for that parameter.

Systematic checks are crucial for helping us identify analysis mistakes or make
new discoveries. When we make variations in the systematic checks, we don’t expect
the analysis results to change. If the result changes significantly, the systematic check
fails and we need to carefully investigate why it fails and correct for it. Only when we
are “truly at our wits’ end”, we can incorporate failed check results into systematic
uncertainties[105]. On the other hand, if the systematic check passes, we shouldn’t
include it in the systematic uncertainties. Barlow’s rule is used when determining if
a systematic check fails or passes and it is shown in Figure 4.1. It is not uncommon
that we start with systematic checks and end up with correction for mistakes, or
discoveries of new systematic effects, or both!

At this point, systematic uncertainties seem to be well defined. However, in some
occasions, it can be tricky to determine if an uncertainty should go to systematic
uncertainty or statistical uncertainty, for example, the uncertainty in the event plane
resolution (σEP). Following the above discussion, it might be natural to classify it
into a systematic effect. It is true if all the data points are corrected by the same
event plane resolution. A useful way to think about this problem is to look at the
normalized residual distribution which is introduced at the first place as a check for
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statistical errors. If σEP is incorporated into the systematic error, it won’t influence
the normalized residual distribution. No matter how much the resolution varies, the
normalized residual distribution will remain the same because every data point is
corrected by the same resolution. If σEP is incorporated into the statistical errors,
a large σEP will lead to a narrow Gaussian distribution, which shouldn’t happen
if the statistical errors are calculated properly. However, as mentioned in Chapter
3, the event plane resolution is measured in 16 Vz bins; and when every 16 data
points along η is combined, they mainly come from different Vz bins. In this case,
data points from different Vz bins are corrected by different resolutions. When the
resolutions vary, the data points will become more spread out, leading to a wider
normalized residual distribution. Again, it shouldn’t happen if the statistical errors
are calculated properly. By incorporating σEP into statistical errors, the numerators
and denominators of normalized residuals will increase(decrease) at the same time.
Therefore, in this analysis, σEP is classified as a statistical error.

4.2 Systematic effects and systematic checks
4.2.1 GEANT3 correction

This is a known systematic effect. When we correct for the STAR material bud-
gets with the GEANT3 simulation as mentioned in Chapter 3.5 , dN

dη
and v1(pT ) are

required as input parameters. We expect those parameters to influence the correc-
tion factors but we are uncertain of their values. Furthermore, it is impossible to
measure dN

dη
and v1(pT ) simply because our detector doesn’t cover the whole η range

and it cannot measure pT at forward and backward η. Therefore, we take our best
guess as the default setting, then vary dN

dη
and v1(pT ) within a reasonable range and

incorporate the differences into systematic uncertainties.
The default setting is: v1 is independent of pT dN

dη
comes from the unfolding

analysis conducted by Mate Csanad. The variations are as follows, only one parameter
is varied at a time.

• v1(pT ) = k · √pT

• v1(pT ) = k · p2T

• dN
dη

measured by the PHOBOS experiment [106]

56



PHOBOS never measured dN
dη

at √
sNN =27 GeV, but STAR measured dN

dη
at both

√
sNN =27 GeV and √

sNN =19.6 GeV (preliminary). A “fake” PHOBOS measure-
ment at √sNN =27 GeV was created for the sake of systematic uncertainties. It was
calculated as follows:

dNPHOBOS27

dη
=

dNPHOBOS19.6

dη

dNSTAR19.6

dη

× dNSTAR27

dη
(4.1)

4.2.2 Variation of references

The variation of references was first conducted as a systematic check. Naively, we
expect the measured v1 to be the same regardless of the references used. However,
the analysis results turned out to be different when v1 was measured with respect to
Ψ1 from TPC and the other side of EPD (Figure 4.2 and 4.3). Further investigation
shows the differences could arise from at least three different sources.

• Nonflow effects: here the nonflow effects mainly refer to resonances decay,
jets and di-jets. When the η gap between the PoI and the reference becomes
larger, the nonflow effect gets suppressed. It might be more intuitive to expect
|v1| to be smaller when the nonflow effect decreases since the nonflow usually
introduces fake positive correlations. However, in principle, |v1| can also become
larger with decreased nonflow. Only data knows the answer.

In one of the studies, several symmetric references around the mid-rapidity were
used: |η| < 1.0, 0.9, 0.8, 0.7, 0.6, 0.5. The magnitude of v1 turned out to decrease
with increasing η gaps, especially for data points at smaller |η|, where the η gaps
are smaller and thus the measured flow is more sensitive to the nonflow effects.
Interestingly, the same study with UrQMD led to an opposite observation: |v1|
increases with increasing η gaps. It doesn’t mean the UrQMD analysis is wrong
but it definitely indicates that UrQMD cannot model the nonflow effects well.

At this point, there are reasons for us to believe the differences at small |η| in
Figure 4.2 and 4.3 can come from the fact that the nonflow effects are better
suppressed when ΨEPD

1 was used. But how about the peripheral collisions? At
both energies, |v1{ΨEPD

1 }| is larger than |v1{ΨTPC
1 }| at small |η|. Then it comes

to the momentum conservation effect.

• Momentum conservation effect: as discussed in Chapter 3.2, the measured
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flow can contain artificial correlations simply due to the fact that momentum
is conserved in the collisions. However, by using a symmetric reference around
the mid-rapidity, the momentum conservation effect can be excluded[58]. It is
the main reason why TPC is chosen as the reference in this analysis. When a
single side of EPD is used as the reference, the momentum conservation effect
cannot be suppressed, and it is more prominent when ⟨pT ⟩ is high (small |η|)
and the multiplicity is low (peripheral collisions).

At peripheral collisions, the v1{ΨEPDEast
1 } (v1{ΨEPDWest

1 }) curve is shifted down
(up) from the v1{ΨTPC

1 } curve, which is consistent with the observation at
TPC(Figure 3.1). It indicates v1{ΨEPDEast(West)

1 } is influenced by the momentum
conservation effect significantly.

• Event plane decorrelation: previous simulation study shows that the partic-
ipant plane and the spectator plane can be decorrelated and this decorrelation is
most prominent at central and peripheral collisions[53]. As a result, at smaller
|η|, |v1{ΨTPC

1 }| can be larger than |v1{ΨEPD
1 }| because the PoI are more corre-

lated with the participant plane; at larger |η|, |v1{ΨTPC
1 }| can be smaller than

|v1{ΨEPD
1 }| because the PoI are more correlated with the spectator plane.

Ideally, only the difference due to the nonflow effect should go to the systematic
uncertainties. However, it is impractical to isolate those effects. So, all the failed
checks are incorporated into the systematic uncertainties.

4.2.3 v1 asymmetry

There is no doubt that v1(η) should be asymmetric, therefore the consistency between
|v1(η)| at forward and backward pseudorapidity becomes a natural systematic check.
At the beginning, this systematic check failed. After further investigation, we realized
that the inconsistency comes from the unsymmetric dN

dη
in TPC which leads to some

momentum conservation effect. As an improvement, an η weight was introduced to the
TPC tracks that are used to reconstruct the event plane to force the dN

dη
distribution

to be symmetric. A better η cut was also implemented to the √
sNN =27 GeV data

set to account for the inefficient iTPC sector. Details about this investigation can be
found in my STAR internal Drupal page. After refining the analysis method, some
inconsistency still remains and they are incorporated into the systematic uncertainties
as a last resort.
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Figure 4.2: v1(η) measured with two different references at √sNN =19.6 GeV (before
correcting for the STAR material budget). Orange data points are measured with
respect to Ψ1 from the other side of EPD; black data points are measured with respect
to Ψ1 from TPC. Circles are v1(η) when η > 0; squares are −v1(−η) when η < 0.
The differences can arise from several effects including the momentum conservation
effect, nonflow and the event plane decorrelation. Nevertheless, it is impractical to
isolate and disentangle individual effects.
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Figure 4.3: v1(η) measured with two different references at √sNN =27 GeV (before
correcting for the STAR material budget). Orange data points are measured with
respect to Ψ1 from the other side of EPD; black data points are measured with respect
to Ψ1 from TPC. Circles are v1(η) when η > 0; squares are −v1(−η) when η < 0.
The differences can arise from several effects including the momentum conservation
effect, nonflow and the event plane decorrelation. Nevertheless, it is impractical to
isolate and disentangle individual effects.
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Figure 4.4: Multiple systematic checks at√sNN =19.6 GeV. Different colors represent
different checks. Circles are y(η) at η > 0, squares are −y(−η) at η < 0. Please refer
to Figure 4.1 for the formulas used to calculate the value and error bar of each point.
Only the points whose error bars don’t touch zero are incorporate into the systematic
uncertainties.

4.2.4 Systematic uncertainties on v1

The calculation of systematic uncertainties follows the flowchart in Figure 4.1. All the
systematic checks are shown in Figure 4.4 and 4.5. Only the checks that fail according
to Barlow’s rule are passed to the systematic uncertainty following the equation:

σsys =

√∑
i

(σsys,i/
√
12)2 (4.2)

4.2.5 Systematic uncertainties on η

The pseudorapidity and azimuthal angle of each EPD tile are determined by a straight
line between the primary vertex of the collision and a random point on the tile, which
leads to the uncertainty on the η of each EPD ring. At each VZ bin, the η of each EPD
ring is determined by the averaged η over all the tiles on this ring over all the events.
The associated systematic uncertainty is then calculated as the standard deviation of
all the η values.
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Figure 4.5: Multiple systematic checks at √sNN =27 GeV. Different colors represent
different checks. Circles are y(η) at η > 0, squares are −y(−η) at η < 0. Please refer
to Figure 4.1 for the formulas used to calculate the value and error bar of each point.
Only the points whose error bars don’t touch zero are incorporate into the systematic
uncertainties.

Figure 4.6: Demonstration of how EPD rings (on the west side) from different VZbins
are combined based on their ⟨η⟩. Bins that are marked by the same color and pattern
are combined.
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4.3 Propagation of systematic uncertainties
4.3.1 Average of η

As discussed in Chapter 3.4, to enhance the visibility of the data points, v1 from
various VZ bins are combined by taking the average of every sixteen data points
along the η direction. Figure 4.6 shows the ⟨η⟩ of each west EPD ring in each VZ

range (averaged over all the tiles on this EPD ring and over all the events in this VZ
range). Bins marked by the same color and pattern are combined, and the combined
bin is calculated as follows:

η =

∑16
i=1miNi∑16
i=1Ni

, (4.3)

σsys =

√∑16
i=1(σ

2
i +m2

i )Ni∑16
i=1Ni

− (

∑16
i=1miNi∑16
i=1Ni

)2, (4.4)

σstat =
σsys√∑16
i=1Ni

(4.5)

where mi is ⟨η⟩ from bin i; Ni is the number of entries in bin i; σi is the standard
deviation (systematic uncertainty) of bin i.

4.3.2 Average of v1(η) at forward and backward η

Due to the symmetric nature of the Au+Au collision, the measurements at the forward
and backward pseudorapidity can be viewed as two independent measurements on
the same observable. Therefore, when needed, they can be combined to reduce the
statistical uncertainties and to improve the presentation of the analysis results. They
are combined as follows:

v1(η) =
1

2
× [v1(η)− v1(−η)], η > 0, (4.6)

σstat(η) =
1

2
×
√

[σstat(η)]2 + [σstat(−η)]2, η > 0. (4.7)

However, the systematic uncertainties shouldn’t decrease as the number of mea-
surements increases. So, it is calculated as:

σsys(η) =
1√
2
×
√

[σsys(η)]2 + [σsys(−η)]2, η > 0. (4.8)
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4.3.3 Average of centralities

This measurement was conducted for seven centralities: 0 ∼ 5%, 5 ∼ 10%, 10 ∼
20%, 20 ∼ 30%, 30 ∼ 40%, 40 ∼ 50%, 50 ∼ 60%. The same measurement at different
energies and by different experiments were conducted in wider centrality bins [68][67].
In order to have a more precise comparison between this measurement and previous
measurements, we need to report our results in the same centrality range, e.g. 10 ∼
40%. It was done by conducting the whole analysis all over again in the 10 ∼ 40%

centrality, including the systematic checks and the systematic uncertainty calculation.
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Chapter 5
Results and Discussions

5.1 Results
Figure 5.1 shows v1(η) measured in Au+Au collisions at √

sNN =19.6 and 27 GeV
for seven centralities. Statistical errors are plotted with vertical and horizontal lines,
while the systematic errors are plotted with boxes. The statistical errors associated
with η are too small and hidden behind the line widths of the statistical errors asso-
ciated with v1. At both energies, v1(η) cross zero roughly around the beam rapidity
for all the centralities. At η < ybeam, |v1(η)| decreases towards central collisions;
at η > ybeam, |v1(η)| slightly increases and then decreases going from peripheral to
central collisions.

The “v1 wiggle” (v1 changes sign three times along η including the zero crossing at
the midrapidity) has been observed by multiple experiments at various energies [67,
60, 65, 68, 70]. It is believed to be due to the longitudinal hydrodynamic expansion
of a tilted source[90, 91, 92, 93, 97]. As shown in Figure 1.10, after the collision, a
tilted source is created due to the local imbalance of the longitudinal momenta of
the forward- and backward-going participants. Due to the higher pressure gradient,
more particles are produced along the minor axis of the tilted fireball, leading to a
negative ⟨px⟩ at small positive η, and thus a negative v1. For central collisions, the
fireball is less tilted and less anisotropic, resulting in a milder v1(η) slope around the
midrapidity[90]. For peripheral collisions, the fireball is more titled, but the nuclear
fragments also gets stronger deflection, leading to both large flow and large “anti-
flow” in the fragmentation region. This can explain the nonmonotonic change of
v1with centrality at the forward pseudorapidity.

Figure 5.2 shows v1(η − ybeam) at
√
sNN =19.6 and 27 GeV for seven centralities.

The results from the forward and backward pseudorapidities are combined by aver-
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Figure 5.1: v1(η) at √sNN =19.6 (red) and 27 (black) GeV in Au+Au collisions for
seven centralities. Circles are v1(η) at η > 0, squares are −v1(−η) at η < 0. Statistical
errors are plotted with lines, systematic errors are plotted with boxes. The red arrows
represent the beam rapidity (ybeam = 3.0) at√sNN =19.6 GeV, while the black arrows
represent the beam rapidity (ybeam = 3.4) at √sNN =27 GeV.

aging v1(η) and −v1(−η). Again, the statistical errors are plotted with vertical and
horizontal lines, while the systematic errors are plotted with boxes, and the statis-
tical errors associated with η are too small to be seen. At all the centralities, the
v1(η− ybeam) curves from two energies fall on top of each other especially beyond the
beam rapidity. This scaling with (η−ybeam) is usually referred as “limiting fragmenta-
tion”. The phenomenon of “Limiting fragmentation” will be discussed in more details
in Chapter 5.3. Figure 5.3 shows the comparison between the STAR and PHOBOS
measurements. The results at √sNN =19.6 GeV exhibit excellent consistency.

5.2 Model comparisons
Figure 5.4 shows the model comparison at √

sNN =19.6 GeV. The simulation with
UrQMD are represented by the orange and navy blue bands. UrQMD (Ultra-relativistic
Quantum Molecular Dynamics) is a microscopic hadron transport and string model.
In the standard cascade mode, UrQMD models particle production via hadron rescat-
tering, resonances decay, string excitation and decay. It doesn’t rely on any mean-field
or equilibrium assumptions. The UrQMD particles are sampled at 500 fm/c after the
collision in the cascade mode. The orange band is v1(η) measured with respect to
the reaction plane, while the navy blue band is v1(η) measured with respect to the
event plane. The event plane angle and its resolution are calculated with exactly
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Figure 5.2: v1(η−ybeam) at
√
sNN =19.6 (red) and 27 (black) GeV in Au+Au collisions

for seven centralities. The results from the forward and backward pseudorapidities
are combined by averaging v1(η) and −v1(−η). Statistical errors are plotted with
lines, systematic errors are plotted with boxes.
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Figure 5.3: v1(η − ybeam) measured by STAR and PHOBOS for 0 ∼ 40% centrality.
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the same reference, track cuts and weights as what were used in the experimental
measurement. The discrepancy between v1{RP} and v1{EP} can originate from the
lumpiness of the colliding nuclei, the non-flow correlations and the decorrelation be-
tween the spectator plane and the participant plane. This suggests it is important
to use the event plane rather than the reaction plane to calculate v1 in models if we
want to make an “apple-to-apple” comparison between the model calculation and the
experimental measurement. Although UrQMD failed to reproduce the experiment re-
sults quantitatively, it was able to reproduce the overall shape of the data including
the “v1 wiggle” and the substantial nonzero v1 at the forward pseudorapidity.

The simulations with MUFFIN[33] are depicted by the pink and green curves.
MUFFIN is an event-by-event three-fluid dynamic model based on the vHLLE code[107].
In this model, the incoming nuclei are represented by two droplets of cold nuclear fluid,
called projectile and target fluids. The process of heavy-ion collision is thus modeled
as mutual interpenetration of the projectile and target fluids. The phenomenon of
baryon stopping is modeled as friction between the projectile and target fluids. The
kinetic energy lost to friction is channeled into the creation of a third fluid, which
represents particles produced in the reaction. In this calculation, MUFFIN was cou-
pled to a final-state hadronic cascade using SMASH[31]. The v1 from MUFFIN are
measured with respect to the reaction plane and as a function of rapidity. A pT cut
of 0.15 < pT < 2.0 GeV/c was applied to the simulation data while no pT cut was ap-
plied to the particles of interest in the experiment. The green curves represent v1(y)
of nucleons, while the red curves represent v1(y) of π−. The solid lines represent the
simulation implementing a crossover phase transition, while the dashed lines represent
the simulation implementing a first-order phase transition. This MUFFIN+SMASH
hybrid simulation shows the sign of π− v1 at large rapidity is sensitive to the QGP
phase transition. It will be interesting to see if this sensitivity still exist for charged
particle v1(η). Since the proportion of nucleons increases at the fragmentation region,
it is possible that v1 at large η is predominantly influenced by the nucleon v1, which
exhibits a mild dependence on the QGP phase transition.

The bright blue band shows the simulation from a (3+1)-dimensional hybrid
framework with parametric initial conditions (both the initial energy density dis-
tribution and the initial baryon density distribution) [97]. This model has success-
fully reproduce the measured rapidity and beam energy dependence of the directed
flow v1(y) of identified particles from √

sNN =7.7 to 200 GeV. However, it yields
significantly smaller v1(η) compared to the STAR measurement at the forward pseu-
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dorapidity. This discrepancy mainly arises from the fact that this model only takes
into account the fluid at the participant region. In reality, the nucleons that don’t di-
rectly overlap with other nucleons at the initial stage of the collision can also interact
with the fireball, thus making a substantial contribution to the final particle produc-
tion across the entire (pseudo)rapidity range. Therefore, any dynamical models must
treat the full three-dimensional system in detail.

Figure 5.5 shows the model comparisons at√sNN =27 GeV. Similar to√sNN =19.6
GeV, UrQMD qualitatively reproduced the overall shape of the measured v1(η). The
hybrid models that only simulate the middle fluid failed to produce any non-zero v1
at the forward pseudorapidity. Again, it demonstrates the importance of including
all the segments of the heavy-ion collisions in the model study.

5.3 Discussion
Particle production at the forward and backward (pseudo)rapidity has been poorly
understood and cannot be reproduced by existing models. Over the years, one way
to gain insights into the nature of particle production is through the study of limiting
fragmentation[108, 109, 110, 111].

The hypothesis of limiting fragmentation states that, in high-energy collisions,
two incoming particles go through each other and break into fragments in the pro-
cess instead of completely stopping each other [112]. It further predicts that at
high enough energy, both d2N/dy′dpT and the mix of particles species reach a lim-
iting value and become independent of energy in a region around y′ ∼ 0, where
y′ ≡ y− ybeam and y is the rapidity. It also implies a limiting value for dN/dη′ where
η′ ≡ η − ybeam [113]. This dN/dη′ scaling has been observed both at BRAHMS and
PHOBOS[114, 115, 106]. Surprisingly, the same scaling behavior was also observed
for directed and elliptic flow at PHOBOS and STAR [116, 67, 60, 65, 68, 70]. This
analysis verified the v1(η−ybeam) scaling again at one more energy with high precision
(Figure 5.3). While the energy scaling of the yield around y′ ∼ 0 can be attributed
to “spectators” minimally influenced by the collisions, the energy scaling of directed
flow is less intuitive to comprehend, as v1 is usually closely related to the collision
dynamics. A common interpretation for large v1 at the forward rapidity is the de-
flection of nuclear fragments. However, it is hard to explain the energy independence
of the directed flow around y′ ∼ 0 with this picture. The limiting fragmentation of
directed flow indicates the production of large v1 at the fragmentation region might
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Figure 5.4: Model comparisons of v1(η) at
√
sNN =19.6 GeV for 10 ∼ 40% centrality.

Details about the models can be found in the text. Note v1 from the MUFFIN
simulations are measured as a function of rapidity instead of the pseudorapidity.
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come from another mechanism.
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Chapter 6
Summary

Directed flow (v1(η)) has been measured at √sNN =19.6 and 27 GeV over six units of
rapidity with the STAR Event Plane Detector. In order to use a scintillator detector
as the particles of interest region, a whole new method has been developed to ensure
the accuracy of this measurement. The measurement results at √

sNN =19.6 GeV
has exhibited excellent consistency with the previous PHOBOS measurement. The
increased precision of the measurement has revealed finer structures in heavy-ion col-
lisions, including a potential observation of the first-order event plane decorrelation.
Simulations from various models including transport, hydrodynamic, one-fluid hybrid
and three-fluid hybrid models have been compared to this STAR measurement. Only
UrQMD (transport model) and MUFFIN (three-fluid hybrid model) were able to re-
produce a significant v1 at the forward(backward) pseudorapidity as observed in the
experiment. This underscores the importance of incorporating all segments of the
heavy-ion collision in model studies, especially at BES energies where nuclear frag-
ments can substantially influence particle production across the entire pseudorapidity
range. Furthermore, the UrQMD study has shown significant discrepancy between
v1{EP} and v1{RP}, demonstrating the importance of employing the same reference
when comparing experimental measurements and model calculations.
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