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ABSTRACT

Search for Muonic Atoms and Dimuon Production in Heavy-Ion Collisions

by

Kefeng Xin

Leptons, e.g. muons, are ideal tools to explore the hot and dense matter created

at heavy-ion collider experiments, because they have minimal final state interactions

and as a result are able to preserve information of the hot medium. This thesis focuses

on two leptonic physics results of the STAR experiment at Brookhaven National Lab

– dimuons and muonic atom production.

The first measurement of dimuon production at low invariant mass is presented,

using data collected from Au + Au collisions at
√
sNN = 200 GeV. An excess of the

dimuon yield over known hadronic contributions in the mass region 0.2 - 0.55 GeV/c2

is found. This excess might be sensitive to the modified ρ meson spectrum in a hot

medium, which has been proposed to be related to chiral symmetry restoration.

This thesis also presents the first search results for muonic atoms in heavy-ion

collisions. Femtoscopic correlations indicate hadrons and muons arise from the ion-

ization of a muonic atom in the beam pipe. Invariant mass signals are observed for

Kµ and pµ atoms and their antimatter counterparts. Calculations in a simple coales-

cence model do not agree with the yields from the data, suggesting significant other

sources in the calculations may be needed.
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1

Chapter 1

Introduction

It is believed that our universe started with a Big Bang. A few microseconds after the

Big Bang, very hot, dense, and strongly intercting matter evolved [1]. While normal

matter exists in the form of nucleons, it is expected that at higher temperature and

density, like in the very early universe, the strong interaction weakens [2, 3], and

nucleons are “boiled” into a plasma of their constituent quarks and gluons, known

as the quark-gluon plasma (QGP). It was proposed that ultra-relativistic collisions

between heavy ions can release the energy in a finite volume within a short period

of time, and can create the QGP. Then the QGP adiabatically expands and cools

down. Below certain temperature, known as the “freeze-out temperature”, quarks and

gluons form baryons and mesons that can be detected experimentally. Throughout the

evolution of the hot and dense system, leptons are produced and escape not strongly

affected by the medium. Therefore leptons can serve as electromagnetic probes and

provide direct information about the various stages of the system’s evolution. This

thesis focuses on two leptonic measurements, dimuons and muonic atoms, in Au +

Au collisions at center of mass energy 200 GeV per nucleon pair, i.e.
√
sNN = 200

GeV.

Dimuons are muon and anti-muon pairs from virtual photon decays. In this thesis,
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we study dimuon production in the low invariant mass region, between 0.2 GeV/c2 and

0.55 GeV/c2. This mass region is believed to be sensitive to the the modification of ρ

spectrum in a hot medium. This modification may be a signature of chiral symmetry

restoration of the ρ meson and the a1 meson, which is predicted by phenomenological

models in hot nuclear matter. This thesis presents the muon identification method

at low momentum from the TOF detector, and the invariant mass construction with

combinatorial methods. STAR’s first dimuon measurement using the TOF system at

low mass region is presented. While the uncertainty in this measurement is large, we

confirm an excess over known hadronic contributions in this range, similar to previous

dielectron measurements [4, 5].

Muonic atoms essentially are atoms in which the electron is replaced with a muon.

These atoms have been studied in several fundamental measurements, such as pre-

cision measurements of the proton size [6, 7] and nuclear quadrupole moments [8].

Muonic atoms with pions in the core have been produced from intense K0
L beam at

Brookhaven National Lab [9] and Fermilab [10]. However, muonic atoms with dif-

ferent hadrons in their cores, e.g. kaons or antiprotons, have never been observed.

Heavy-ion experiments, with large amount of thermal muons and hadrons produced,

make an ideal environment for the production of such exotic atoms. This high mul-

tiplicity environment increases the probability of atom formation, and provides us

a great opportunity to further study the production of such systems. This thesis

presents the search results for muonic atoms in Au+Au collisions at
√
sNN = 200
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GeV. Two particle correlations suggest that hadrons and muons are from atom ion-

ization. The invariant mass spectra are reconstructed and clear signals of pµ and Kµ

atoms are observed at the expected atom masses.

This dissertation is organized as follows: Chapter 2 briefly introduces relativistic

heavy-ion physics, where it highlights chiral symmetry restoration, as well as presents

a short review of previous muonic atom measurements. Chapter 3 introduces the ex-

perimental setup, with a specific focus on the detectors and the particle identification

that is used in this thesis; Chapter 4 presents the dimuon data set, the analysis

methods, and the proof of principle dimuon mass spectrum. An excess over known

hadronic contributions is seen. Chapter 5 discusses the muonic atom production in

heavy-ion collisions, as well as the the data set that is used. Chapter 6 shows a study

of femtoscopic correlations. The correlations functions are used to probe the atom

ionization at the beam pipe. The fraction of primordial muons from inclusive muons

is determined. Chapter 7 presents invariant mass spectra of several muonic atom

systems. Signals of Kµ and pµ atoms and their antimatter counterparts are found

and yields are extracted. The yields are compared with the calculations from a simple

coalescence model in Chapter 8. And finally in Chapter 9, a summary and outlook

is given.
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Chapter 2

Heavy-Ion Physics and Muon Physics

2.1 Relativistic Heavy-Ion Physics

It is believed that the universe started from a Big Bang, during which a very hot

and dense medium was created in a small volume [11]. A few micro seconds after the

Big Bang, the medium consisted of deconfined quarks and gluons. Their interactions

are described by Quantum Chromodynamics (QCD) [12]. The coupling constant of

QCD, αs, is a function of momentum transfer q:

αs(q) =
2π

β0ln(q/ΛQCD)
, (2.1)

which approaches 0 as the momentum transfer q is much larger than the dimensional

parameter ΛQCD. This behavior is called asymptotic freedom, and has been measured

by many experiments as shown in Fig. 2.1, as summarized by the Particle Data

Group [13].

Because of the asymptotic freedom [2, 3], the quarks and gluons are expected to

exist almost freely at very high temperature and density in the early universe – rather

than bound by strong force in the form of hadrons and mesons in our present world.

This new state of matter is called the Quark Gluon Plasma (QGP) [14, 15].
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Figure 2.1 : Measurements of the strong coupling constant αs.

One of the main goals of heavy-ion experiments is to study the properties of

QGP [16]. The bulk properties of QGP may influence the particle production spec-

tra. The QGP matter can be treated as fluid with collective hydrodynamic flow [17].

Parton energy loss was proposed by Bjorken [18] to be useful to study bulk proper-

ties. The gluon radiation induced by the QCD matter may be quite sizable and cause

“jet quenching” [19]. Chiral symmetry was predicted to be restored in heavy-ion

collisions [20], and model calculations can be compared with experimental data [21].

After creation, the QGP expands and cools down. When the particle production

ceases, the system reaches “chemical freeze-out”. The freeze-out temperatures and

chemical potentials were extracted from particle spectra [22]. When elastic interac-

tions cease, the system reaches “kinetic freeze-out”. The freeze-out temperatures and
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radial flow velocities are also extracted from particle spectra [22]. The high multiplic-

ities of particles in heavy-ion experiments also allow the search for exotic particles, for

instance the search for heavy antimatter nuclei [23], hypernuclei [24], and di-baryon

states [25]. In the next two sections, we will discuss chiral symmetry restoration and

muonic atom production.

2.2 Chiral Symmetry Restoration and Dimuon Physics

The spin of a quark can either be in the direction of motion (right-handed), or opposite

the direction of motion (left-handed). This is called helicity of a quark, which is the

same as chirality if we neglect quark masses. The left or right components can be

selected by the fifth γ matrix, i.e. γ5 = iγ0γ1γ2γ3:

ψLf =
1

2
(1− γ5)ψf ,

ψRf =
1

2
(1 + γ5)ψf ,

(2.2)

where f indicates the quark flavor. The operator P± ≡ (1±γ5)/2 is called the projec-

tion operator. The total quark field can be decomposed into a left-hand contribution

and a right-hand contribution:

ψ = ψL + ψR, (2.3)

and so does the QCD Lagrangian:

Lq = Lq(ψL) + Lq(ψR), (2.4)
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which shows their is no coupling between left-hand and right-hand components, mean-

ing a conservation of quark handedness. In a two quark model, up and down, they can

be considered as two components of an isospin spinor. The Lagrangian is symmetric

under this rotation in isospin space:u′L,R
d′L,R

 = UL,R

uL,R
dL,R.

 (2.5)

In other words, the QCD Lagrangian has a chiral symmetry U(2)L×U(2)R for massless

particles. As a consequence of this symmetry, we expect the three isospin vector pion

sates should have a isospin scalar partner.

However, many experiments did not find full chiral symmetry. For instance, the

three pion states should have a scalar partner σ to form an irreducible representation

of the chiral group, while the σ particle was not observed experimentally. Thus

we know that the chiral group SUL(2) × SUR(2) breaks spontaneously to isospin

subgroup SU(2). This is called chiral symmetry breaking. The rest of this section

will show in certain circumstances, such as the early stage of heavy-ion collisions, the

chiral symmetry can be restored, and experimental observables can be compared with

model calculation that includes chiral symmetry restoration.

The pair production energy increases at high temperature due to increasing effec-

tive potential, i.e. the thermodynamical potential, from the hot medium, where there

are finite chemical potential [20]. If it is above the binding energy of qq̄ pairs, the

pairs do not have the potential that causes the symmetry breaking. The broken chiral
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symmetry in this case is restored at high temperature. This restoration, bringing in

modified hadron contributions, could be observed in relativistic heavy-ion collisions

which creates extremely hot medium.

In heavy-ion experiments, dilepton production is a good way to investigate chiral

symmetry restoration, because leptons are almost not affected by final-state interac-

tions [21]. At SPS, the NA60 collaboration studied dimuon production [27]. They

showed the net dimuon mass spectrum for 158 A GeV In-In collisions in the low mass

regime (LMR), see Fig. 2.2a. All known sources from hadronic decays were included.

A clear excess were observed. The excess dimuon can be described by in-medium

modified ρ contributions, as shown in Fig. 2.2b. This modification implies that the

chiral partner of the ρ, the a1(1260) meson, becomes broad. Chiral symmetry restora-

tion merges the vector (ρ) and axialvector (a1) correlators into a flat continuum. Both

in-medium broadened function [28] and dropping mass function [29] were developed

to explain the data. The broadening function can better describe the excess.

At measured mass regime 0.2 GeV < M < 1.4 GeV/c2, thermal dielectron pro-

duction has a large contribution from the ρ meson. The mass broadening of ρ has

been considered as a signature of chiral symmetry restoration [30]. One of the exper-

imental observables is the dilepton excess at LMR. e+e− pairs should show a strong

excess below the free ρ mass through the ππ-annihilation channel. Because of much

larger mass, the advantage of dimuon over dielectron is that the gamma conversion

contamination is largely suppressed.
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(a) (b)

Figure 2.2 : The left panel shows the dimuon mass spectrum before (dots) and after

subtraction of the known decays (triangles). Transposed to the right panel shows the

data compared to theoretical predictions. Figures taken from [27].

2.3 A Brief History of the Muonic Atom Searches

Muonic atoms are atoms that consist of a hadron and a proton, bound by Coulomb

force. Thus the structure of a muonic atom is similar to an ordinary hydrogen atom,

but with a much smaller radius due to the large mass difference between a muon and

an electron. The radii can be calculated from a Bohr model, which is a few hundred

fm. The binding energy can also be calculated from a Bohr model, which is a few keV

(exact values depends on the hadron mass, e.g. for the pµ state Ebind = 2.53 keV).

Muonic atoms have been studied over decades. Previous experiments at Brookhaven
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National Lab [9] and Fermilab [10] have successfully produced π-µ atoms from very

intense K0
L beams. Large numbers of pions and muons are produced from K0

L decays.

When the produced π and K have similar velocities, the Coulomb force bound them

together as bound states and form π-µ muonic atoms. In these experiment, the atoms

then pass through a thin aluminum foil before the end of the vacuum channel. An

aluminum foil, 0.030 inch thick, was shown to be enough to ionize the atoms. The

daughter pions and kaons then exit the foil at the same velocity. The candidate events

should form a sharp peak in the distribution of α =
pπ − pµ
pπ + pµ

at
mπ −mµ

mπ +mµ

. The two

experiments measured 33 events (BNL) and 320 candidates (Fermilab), as shown in

Fig. 2.3. This method, however cannot be used to produce other muonic atoms like

pµ or Kµ, because we cannot produce an high luminosity beam whose decay products

are p/K and µ.

Figure 2.3 : α distribution from the BNL[9] (left) and Fermilab[10] (right) K0
L to π-µ

atom experiment.

The muonic hydrogen, i.e. the pµ atom, recently became a very useful tool for
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precise measurement of proton structure [7]. These studies took advantage of the

larger wave function overlap of a proton and a muon in muonic atoms, as a result of

the smaller radius. As shown in Fig. 2.4, reference [6] achieved very high precision in

the measurement of proton size using Lamb shift in muonic atoms. The discrepancy

between the result from this method (“Our value” in Fig. 2.4) and from the scattering

experiments (“e-p scattering” in Fig. 2.4) remains as an open problem to be resolved.

Figure 2.4 : Figure taken from [6]. Filled blue circles, number of events in the laser

time window normalized to the number of ‘prompt’ events as a function of the laser

frequency. The fit (red) is a Lorentzian on top of a flat background. The predictions

for the line position using the proton radius from other measurements are indicated

(yellow data points, top left). The result from reference [6] is also shown (‘our value’).

In heavy-ion collisions, although leptons can be a very good probe of QCD matter,
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leptons are copiously produced from hadronic decays at the very late stage of the

collision. The decay kinematics smear the information of the fireball that the particles

carry, and makes inclusive leptons not very sensitive to the hot medium.

Mel Schwartz first proposed measuring muonic atoms at heavy-ion collision exper-

iments. It is predicted by theorists [31] that only muons in early stage of collisions,

from thermal emission or resonance decays, can be captured by a hadron and form a

muonic atom. The muonic atom becomes a perfect filter to select early muons. At

relativistic heavy-ion experiments, various kinds of hadrons are produced along with

muons. If a hadron and a muon are close in phase space, they could form a muonic

atom, and the rate has been calculated [32] for pµ, Kµ and πµ atoms, as shown in

Fig. 2.5. Many of these exotic atoms, such as the p̄µ atom and the Kµ atom were very

difficult to produce. Heavy-ion collisions provide us a unique opportunity to search

and potentially measure muonic atoms. The atom production mechanism is explain

in [31], where a coalescence model is used. The hadron and the muon can form a

Coulomb bound state when they are close in phase space. Details of the derivation

will be further dicussed in Chapter 8.

This paragraph will discuss a few other exotic atom production scenarios in heavy-

ion collider experiments. The collision productK0
L may also form π−µ atoms similarly

to what was found in the previous fixed target experiments. However, theK0
L intensity

is orders of magnitude lower than previous experiment, making the production rate

very low. And because K0
L has a long life time (> 5 × 10−8) s, most of them decay
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Figure 2.5 : Left panel: muonic atom yields from STAR and Kapusta & Mocsy [32];

right panel: muonic atom yields with muon transverse momentum 0.17 < pT < 0.30

GeV/c. Plots taken from [33].

outside of detectors and will not be detected. Other possible exotic atoms include

pionic atoms, such as Kπ, pπ, and ππ. These atoms can be produced when a hadron

captures a π. Because of the strong interactions inside of these pionic atoms, charged

K/p and π decay quickly into neutral particles in about 2.5 × 10−15 s [34]. These

neutral particles will not be detected by many trackers like the STAR detector, and as

a result these pionic atoms cannot be identified. Another simple idea is to measure the

photon emission spectrum of muonic atoms. Figure 2.6 shows energy levels, cascade,

and experimental principle series in muonic hydrogens. These principle series, e.

g. K-series X-rays, have fixed energies about 2 keV that can be calculated. Thus

these photons with energy of 2 keV can be a strong evidence of muonic atoms. The
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Figure 2.6 : Energy levels, cascade and experimental principle series in muonic hy-

drogen. Figure taken from [6].

disadvantage is that in heavy-ion collisions, soft photons can be emitted from many

electromagnetic sources, e. g. detector material interactions. These large backgrounds

make this study not feasible. Secondly, most relativistic collider detectors are not

designed to measure photons as low as a few keV. In this thesis, we will focus on the

direct production of muonic atoms from particle coalescence mechanism, as suggested

in [31].
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Chapter 3

Experimental Setup

3.1 The Relativistic Heavy-Ion Collider

The Relativistic Heavy-Ion Collider (RHIC) [35, 36] is located at Brookhaven National

Lab in Upton, New York, United States. An aerial picture is shown in Fig. 3.1. The

two main active experiments at RHIC are STAR (for Solenoidal Tracker at RHIC) and

PHENIX (for Pioneering High Energy Nuclear Interaction eXperiment). The STAR

experiment is located on the main ring close to the injection position on the main ring

as shown in the picture. The beams start from the linear accelerator LINAC, then

is injected to the BOOSTER, then AGS, and finally RHIC ring. The main RHIC

ring has beams from two opposite directions. The clock-wise ring is called the ”Blue

ring”, and the counter clock-wise ring is called the ”Yellow ring”.

By colliding ions or protons, RHIC is able to explore the quark-gluon plasma

(QGP) [14, 15], which is a new state of matter with the degree of freedom from quasi-

free quarks and gluons. It is believed that QGP can be created after the collisions, and

that QGP has existed a few milliseconds after the Big Bang [1]. RHIC is very flexible

at accelerating different particle species. It can collide heavy ions, such as gold,

uranium, and copper, which allows for system size and energy density comparisons
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Figure 3.1 : An aerial picture of RHIC [37]. The lines represent the beam path. The

STAR detector is locate at six o’clock, and the PHENIX detector is located at nine

o’clock.

across results from QGP. It can also collide deuterons (D) or helium-3 (3He) with

heavy ions, which allows the direct comparison between hot and cold matters. RHIC

is able to accelerate heavy-ion beams up to 100 GeV per nucleon, producing center of

mass collision energy of
√
sNN = 200 GeV per nucleon-nucleon collision in Au + Au

system. The beam energy scan program successfully extended the colliding energy

from
√
sNN = 200 GeV to as low as 7.7 GeV, allowing the study of QCD phase

transition and possible critical point. RHIC is the only collider in the world that can

collide polarized protons, allowing the study of the origin of proton spin. For proton

beams, RHIC is able to produce 250 GeV beams, i.e.
√
s = 500 GeV proton-proton
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collisions.

3.2 The Solenoidal Tracker at RHIC

The Solenoidal Tracker at RHIC (i.e. STAR detector) [39] consists of many sub-

detectors, as shown in Fig. 3.2. A sophisticated trigger system [40] was designed

to select interesting events, and a Data Acquisition System (DAQ) [42] was used to

collect data. The trigger detectors include the Zero Degree Calorimeter (ZDC) [43],

Figure 3.2 : STAR sub-detectors (produced by Alex Schmah). EEMC: Endcap Elec-

tromagnetic Calorimeter; BEMC: Barrel Electromagnetic Calorimeter; VPD: Vertex

Position Detector; TPC: Time Projection Chamber; BBC: Beam-Beam Counter.

the Beam-Beam Counter (BBC), and the Vertex Position Detector (VPD) [44]. The
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particle tracking and identification detectors include the Time-Projection Chamber

(TPC) [45], the Electro-Magnetic Calorimeters (EMC) [46, 47], and the Time Of

Flight (TOF) [50]. The main detectors used in this analysis are the TPC, the VPD,

and the TOF.

The TPC [45] detector, shown in Fig. 3.3 is the primary tracking detector at

STAR. The collisions take place around the center of the chamber, so that most of

Figure 3.3 : A schematic view of the STAR TPC.

the produced particles pass through it. It is a large cylindrical gas chamber, 4.2

m long and 4.0 m in diameter, filled with P10 gas∗. It is surrounded by magnetic

system [48], which provides 0.5 Tesla magnetic field along the beam direction. The

magnetic field bends charged particle trajectories to measure their momenta, which

will be discussed in the next paragraph. A uniform electric field of 135 V/cm is

∗10% methane and 90% argon, for large drift velocity.
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generated between central membrane cathode and end cap anodes. This electric field

is used to drift ionized electrons produced by charged particles passing the gas. The

TPC has a full azimuthal coverage, and a mid rapidity coverage of −1 < η < 1.

The readout system at the end caps is based on multi-wire proportional chamber

technology. A total of 136,608 readout pads can reconstruct the ionization position

(hit position). A helix model was used to fit the TPC hit positions to get a particle

track in the magnetic field, called a global track. The primary collision vertices can be

reconstructed by extrapolating all global track to the center direction. Its resolution

improves with the square root of the number of tracks used for the measurement. At

top energy Au + Au
√
sNN = 200 GeV collisions, the resolution in the transverse

plane (with respect to the beam direction) is better than 1 mm, as shown in Fig. 3.4.

The distance between a global track and the primary vertex is called DCA (Distance

of Closest Approach). If a global track has a DCA smaller than 3 cm, the track is

re-fitted including the primary vertex. The resulting track is call a primary track.

The curvature of a helix can be associated with the transverse momentum, pTκ =

Bq, where pT is the transverse component of particle momentum, κ = 1/r is the

curvature of the helix, B is the magnetic field, and q is the charge of the particle.

The TPC also measures the energy loss of a particle (dE/dx) [49], and use it for

particle identification, to be discussed in Sect. 3.3.1.

The VPD detector [44] consists of two assemblies on two sides (east and west) of

STAR around the beam. Each assembly has 19 independent detectors (also called
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Figure 3.4 : Primary vertex resolution in the transverse plane (taken from [45]). The

resolution decreases as the square root of the number of tracks used in the calculation.

“tubes”). Figure 3.5 shows a schematic front view of a VPD assembly (left), and a

photograph of the two VPD assemblies (right). Each tube has a Pb converter followed

Figure 3.5 : On the left is a schematic front view of a VPD assembly, and on the

right is a photograph of the two VPD assemblies. A one foot long ruler is shown for

scale on the right. Figure taken from [44].
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by a plastic scintillator and a photomultiplier tube (PMT). The first signal the VPD

collects for each collision comes predominantly from π0-decayed photons. The signals

are digitized independently by two sets of electronics. The VPD has an online signal

path, which is part of the trigger system, e.g. ”VPD minimum bias” trigger uses

VPD. It also has an offline signal path, which is used to measure the longitudinal

position of a collision primary vertex, and provides “start time” (collision time) and

vertex information. Because the TPC has a more precise vertex measurement due to

high multiplicities in most collisions at RHIC, it is usually only used to reject events

when the longitudinal vertex positions measured from the two detector have a large

difference. The location of the primary vertex measured by the VPD is

ZV PD
vertex = c(Teast − Twest)/2, (3.1)

where Teast and Twest are the times from the east and west VPD assembly, respectively,

and c is the speed of light. The VPD also provides the “start time”, which is the

collision time, to be used by the TOF. The start time is given by:

Tstart = (Teast + Twest)/2− L/c, (3.2)

where L = 5.7 m is the distance from either assembly to the center of TPC. Then the

space and timing resolution can be derived as:

σ(Zvertex) = (c/2)σ∆T = (c/
√

2)σT = (c/
√

2)σ0/
√
N, (3.3)

where σ0 is the time resolution of a single VPD tube, N is number of valid tubes.
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Hence the timing and vertex position resolution will improve in high multiplicity

events, where N is larger than low multiplicity events.

The TOF detector surrounds the TPC chamber, and measures the “stop time”

(the time when a particle reaches TOF) of a particle, for the purpose to improve the

particle identification (to be discussed in Sect. 3.3.2) capability [50, 51] at intermedium

momentum range. The TOF modules were built based on the MRPC (Multi-gap

Resistive Plate Chamber) technology [52]. Side views of an MRPC module is shown

in Fig. 3.6. A group of 32 modules form a tray. There are 60 trays on each side of

Figure 3.6 : Two side views of an MRPC module [52].

STAR. The full system was commissioned in 2009, in time for 2010 run which saw
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the start of RHIC Beam Energy Scan, as well as the data set used in thesis of Au +

Au collisions at top RHIC energies.

Each module is a stack of glass plates with uniform gas gaps. Electrodes is ap-

plied to the outer surfaces of the two outer plates. When a charged particle goes

through the chamber, avalanches will be produced. Since plates are resistive they are

transparent to signal induced by avalanches, a signal induced in the pickup pad is

the sum of signals from all the gas gaps. The calibration process involves Integral

Nonlinearity (INL) correction, offset, alignment, slewing correction, and a hit position

correction [53]. After the calibration, the timing resolution after offset and slewing

correction can be better than 100 ps.

3.3 Particle Identification

Particle identification (PID) is essential to many heavy-ion analyses. Good PID allows

us to study the chemistry of heavy-ion collisions, such as meson-baryon difference,

heavy flavor particles, lepton physics. The main sub-detectors at STAR for PID

are the TPC, fTPC (forward TPC), the TOF, EEMC, and BEMC. With these sub-

detectors, STAR is able to cover all charged particles at mid-rapidity, and also able

to perform second vertex construction from long life time decays, such as from K0
S

and Λ. In this chapter, we will focus on the most relevant identification method,

particularly in this thesis, the TPC and TOF identification.
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3.3.1 Particle Identification with the TPC

As discussed in Sect. 3.2, the TPC measures the energy loss of a particle when it

passes through the gas in the TPC chamber. The dE/dx is determined from up to

45 pad rows. The most probable energy loss is measured by truncated mean method,

or by fitting all valid clusters. A unique dE/dx vs p distribution can be obtained

for each particle species, which is used for particle identification shown in Fig. 3.7.

For a particular detector setup, the expected energy loss is a function of momentum

Figure 3.7 : An example of dE/dx vs momentum measured by STAR TPC. The solid

lines represent the expected energy loss as a function of momentum.

and mass of the particle. This can be estimated by Bichsel functions [49]. Each run

STAR will calibrate the correct energy loss and save the corrected Bichsel functions in

STAR database for data production. The lines in Fig. 3.7 show the expected energy

loss used in STAR production for data collected in year 2011.

Due to finite resolution of the dE/dx measurement from the TPC, each particle
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will form a band around the expected values, as shown in Fig. 3.7. The distribution

of dE/dx for a small momentum range can be considered as a Gaussian distribution.

The likelihood of a particle being a certain particle species can be how far its dE/dx is

from the expected value, i.e. NσdE/dx = log
dE/dx

dE/dxexpected
/R, where R is the resolution

of energy loss .

While NσdE/dx for electrons, pions, kaons, and protons are calculated in standard

data production, the NσdE/dx for muons need to be calculated at the analysis stage.

Note that the resolution of dE/dx improves by number of dE/dx hits, i.e. number

of independent measurements. The signal track resolution need to be obtained first.

We do this by averaging over resolution from nσπ and nσe:

Nσπ = log
dE/dx

dE/dxπBichsel
/R, (3.4)

Nσe = log
dE/dx

dE/dxeBichsel
/R, (3.5)

⇒
1

R
=

log
dE/dx

dEdxπBichsel
×Nσπ + log

dE/dx

dE/dxeBichsel
×Nσe

log2
dE/dx

dEdxπBichsel
+ log2

dEdx

dEdxeBichsel

. (3.6)

Then

Nσµ = log
dE/dx

dE/dxµBichsel
/R. (3.7)
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3.3.2 Particle Identification with TOF

At STAR, a software associates a particle’s TPC track and TOF hit. First a track-to-

hits matching is established by extrapolating a track to a TOF hit. If more than one

track is associated with one TOF hit, all such associations will be abandoned; If one

track is associated with multiple TOF hits, the highest ranked matching will be used.

In the TOF matching software, So called the “matching flag”, mMatchFlag, which

will be used in Chap. 5, is determined as follows: mMatchFlag = 0 indicates no

match; mMatchFlag = 1 indicates one-to-one matching; mMatchFlag = 2 indicates

one-to-two matching to TOF hits that have the highest TOT (time over threshold);

mMatchFlag = 3 indicates one-to-two matching and that these TOF hits have the

closest distance to the pickup wire.

For a pair construction analysis, the particles need to be identified track-wise.

In this analysis, to reject all background very high purity should be required. The

timing information measured from the VPD and the TOF can be used to calculate

particle mass, m = p2

(
c2t2

L2
− 1

)
. An example of momentum dependence of the

mass distribution is shown in Fig. 3.8. As we can see, the resolution diverges as

the momentum increases. This behavior increase the difficult of good fitting at high

momentum when particles start to merge.

An alternative way is to use ∆β−1/β−1, defined as:

∆β−1
part

β−1
=
β−1
TOF − β

−1
TPC

β−1
TOF

= 1− L

ct

√
1− m2

p2
, (3.8)

where βTOF is the speed of the particle measured from TOF, βTPC is the speed of



27

Figure 3.8 : The momentum dependence of particle mass distributions (taken

from [50]). The lines represent the 2σregion. The solid lines corresponding to tracks

at midrapidity, and the dashed lines corresponding to tracks at forward rapidity. As

we can see, the mass resolution increases at higher momentum.

the particle measured from the TPC, m is the mass of the particle that we would

like to identify, and p is the momentum of the particle measured by the TPC. From

this equation, we can derive that the expectation value for a candidate is 0, and the

resolution depends on:

δ

(
∆β−1

β−1

)2

= γ−4

(
δp−1

p−1

)2

+

(
δt

t

)2

+

(
δL

L

)2

, (3.9)

where γ =
1√

1− β2
is Lorentz factor. The first term on the right hand side will

converge at higher momentum due to the γ−4 factor. This results in nearly constant

resolution to the variable ∆β−1/β−1 at higher momentum, as shown in Fig. 3.9. This



28

property gives a good constrain on the fitting parameters at higher momentum, where

different particle species begin to merge and statistics begin to drop. The details of

muon PID will be discussed in Sect. 4.1 and Sect. 5.3. The disadvantage of using

∆β−1/β−1 is that we have to assume different particle masses. For unknown particles

whose masses are within a wide range, this method is not suitable.

Figure 3.9 : The momentum dependence of ∆β−1/β−1 distributions for kaons at

√
sNN = 200 GeV/c. The ∆β−1/β−1resolution is nearly a constant at higher momen-

tum.
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Chapter 4

Low Mass Dimuon Production at Au+Au
√
sNN =

200 GeV

The invariant mass method is commonly used in particle and nuclear physics. Two

daughter particles’ kinetic information is combined to reconstruct the invariant mass

of the parent particle. In this chapter, the dimuon invariant mass spectrum is con-

structed from the data collected in 2011 are analyzed. The next sections show a proof

of principle of low mass dimuon spectra, reconstructed from low momentum muons

that are identified by the TOF and the TPC. Improved, future measurements may

help understand the mechanism of chiral symmetry restoration, discussed in Sect. 2.2.

4.1 Data Set and Cuts

A “minimum bias” trigger (MB), which triggered the largest data set of Au+Au at

√
sNN = 200 GeV in 2011, is used in this study. The MB trigger requires a signal

coincidence between the two ZDC detectors, ZDCE and ZDCW (East and West,

respectively). The signals refer to the analog sum of the three PMT signals from the

East and West detectors, requiring the threshold typically about 40% of the single

neutron peak [40].

To select event that are suitable for physics signal extraction, “Event cuts”, listed
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Table 4.1 : Event Selection

Cuts Range

|ZTPC
vertex| ≤ 30 cm

|ZTPC
vertex − ZV PD

vertex)| ≤ 3 cm√
(XTPC

vertex)
2 + (Y TPC

vertex)
2 < 2 cm

Centrality 0-80%

in Tab. 4.1, were applied. A minimum requirement of the number of primary tracks

were used. The primary vertex position along the Z-direction (beam direction) re-

quires an agreement between the TPC measurement and the VPD measurement to

be within 3 cm. This suppresses bad vertex selections from event reconstruction

software due to pile-up. The primary vertex position on the X-Y plane is required

to be around the center of the TPC, to remove events from beam pipe interactions.

Centrality qualifies the geometric overlap region of the two colliding nuclei. A central

event is from a collision that two ions have a large overlap, while a peripheral event

is from a collision that two ions have a small overlap. The most central events have

centralities < 5%, and the most peripheral events that we can use at STAR have

centralities 70− 80%. More peripheral events are more sensitive to trigger biases due

to low multiplicities, as a result STAR does not provide centrality calculations on

these events. Figure 5.5 shows the reference multiplicity distribution in Au+Au at

√
sNN = 200 GeV. In this analysis, up to 0− 80% centrality is used, with a total of
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518 million events.
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Figure 4.1 : Reference multiplicity distribution in Au+Au at

√
sNN = 200 GeV. The

vertical line selects the top 5% most central events.

Track selection cuts are listed in Tab. 4.2. A low momentum limit > 0.15 GeV/c

is required by TOF for PID purpose, because lower momentum muons have larger

curvature and can not reach TOF. It should be noted that these muons are not ac-

cessible to the MTD due to low momentum [41]. A non-zero TOF matching flag (see

Sect. 3.2) is required, meaning a valid TOF match. nHitsFit means the number of

hit points that are used for fitting a track. nHitsF it ≥ 25 is used to insure good

momentum resolution and to reduce track splitting [5]. nHitsDedx means number of

hit points that are used to determining the energy loss. A commonly used value 15

was found to be sufficient in physics analyses [5]. A rather small DCA cut < 1 cm

is used to increase the probability of a track being primary tracks. The centrality,
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which indicates the overlap size of two ions, is estimated from a Glauber model [55]

simulation. Uncorrected charged particle multiplicity within η < 0.5, called reference

multiplicity (i.e. refMult), is compared with Glauber calculation to delineate the cen-

trality [5]. STAR’s software routine (called StRefMultCorr) calculates the centrality

up to 80%. The most peripheral centralities (> 80%) are not calculated due to trigger

bias.

Table 4.2 : Track Selection

Cuts Range

p > 0.15 GeV/c

TOFpathLength ≥ 100 cm

TOFmatchFlag > 0

nHitsFit ≥ 25

nHitsDedx ≥15

DCA ≥ 1

|η| < 1

Muon PID cuts are listed in Tab. 4.3. First half of the pion candidates are removed

from muon candidates by the TPC dE/dx requirement Nσπ < 0. The distribution

of ∆β−1/β−1 vs momentum are shown in Fig. 4.2 (a). For each small momentum

slice, the 2-D plot is then projected to Y-axis, as shown in Fig. 4.2 (b - f). A

double Student’s-T + background fit function was used to fit the distribution. In
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Table 4.3 : Muon Selection

Cuts Range

p 0.15-0.3 GeV/c

Nσπ < 0

Nσµ -3 to -0.5

m2
inv 0.007 to fmcut(p)∗

Fig. 4.2 (b - f), the red lines show the Student’s-T fit for muon candidates, the

blue lines show the Student’s-T fit for pion candidates, and the yellow lines show

the background. The muon candidate selection starts from the center of the muon

fit and extends to lower and high ∆β−1 in small steps (0.001). For first steps, the

muon sample is selected around the ∆β−1 peak value, which has very high purity.

As the extension goes to wider ∆β−1, the pion and the background were included

more and more. After each step, the muon purity was checked from the fit functions,

i.e. fpurity(m) = fµ(min,max)/ftotal(min,max), where fµ(min,max) and ftotal(min,max)

stand for the sum of candidates in mass range (min, max) for muons and inclusive

particles, respectively. The extension will stop when the purity drops below 99%.

The three vertical lines in each plot represent the lower cut, the center of the peak,

and the upper cut. The cuts are then plotted on the 2-D plot in Fig. 4.2 (f), and

fitted with two polynomial functions, shown by the black curves. The two functions
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are given by

−7.7× 10−1 − 1.2× 101x+ 5.8× 101x2 − 9.1× 101x3, (4.1)

2.0× 10−1 − 2.7× 10−1x− 6.4× 100x2 + 1.7× 101x3, (4.2)

for the lower and upper limits, respectively.
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Figure 4.2 : The ∆1/β distribution for muons after TPC −0.5 < Nσµ < 3 cut for

minimum bias Au+Au at
√
sNN = 200 GeV/c. The first panel shows ∆β−1 vs p. The

two lines are fit results based on cuts obtained from each momentum slices, which

are shown in the following panels. The red lines represent the fit for the muon peak;

the blue lines represent the fit to the pion; the yellow lines represent background; the

black lines represents the fit to the total distributions.
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4.2 Data Analysis

In the invariant mass analysis, the four-momenta of the two muons will be added first

to get the pair four-momentum. Then the invariant mass of the pair is given by:

minv =
√
E2 − |p|2, (4.3)

where E is the pair energy, and p is the pair three-momentum. The dimuon invariant

mass spectrum is constructed by pairing a µ+ and a µ− in a same event and calculate

their pair invariant mass with Eq. 4.3. During this process, µ+ and µ− not from

a virtual photon are also paired and contribute to the pair mass spectrum. These

contributions from random pairing are called “combinatorial background”, which is

estimated by “like-sign” method, described later in this section. The muon candidates

are paired in three ways according to electric charges, unlike-sign, “++” like sign, and

“−−” like sign. The pairing is also done in mixed events. Mixed events are used to

correct acceptance differences for different charges, which will be discussed in the next

paragraph. All events are categorized into 9 centrality bins, 20 vertex bins along z

direction, and 2 magnetic field settings. Only muons from similar events are paired.

The pair invariant mass distributions are shown in Fig. 4.3.

Because of the different bending directions of particles with different charges in

the magnetic field inside the detector. the opening angles of the pair lost at the TPC

sector boundaries or dead TPC readout units depend on the charge combination.

This leads to acceptance reduction in different mass regions. The like-sign pair mass

needs correction for the acceptance difference between positive and negative charged
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particles. The correction for positively charged hadron and negatively charged muon,

is the ratio of unlike-sign to like-sign geometric mean in mixed-event. The formula

for the correction is:

LScorrected = 2
√
LS++ · LS−− ·

MEunlike−sign

2 ·
√
ME++ ·ME−−

, (4.4)

where “LS” stands for Like-Sign, “ME” stands for Mixed-Event, and the −/+ indices

stand for the charges of the two muons in a pair. All unlike-sign, mixed-event and

like-sign before and after corrections are shown in Fig. 4.4. The unlike-sign and like-

sign (acceptance corrected) muon distributions are plotted in Fig. 7.2. The difference

between the two will be used for signal extraction.
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Figure 4.3 : Dimuon invariant mass spectra from different combinations.

Track splitting happens when the tracking software does not fit the hit points

correctly. The hits from one track should be reconstructed to one track, but in
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Au + Au at
√
sNN = 200 GeV/c.

this case they are reconstructed to two tracks, as shown in Fig. 4.6. A variable SL



39

Figure 4.6 : Track splitting. a) shows a small SL = −0.5; b) and c) show a large

SL = 1; d) shows in between SL = 0.8.
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(splitting level) can be defined to quantify the degree of splitting:

SL ≡

∑
i Si

Nhits
1 +Nhits

2

, (4.5)
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Figure 4.8 : Fraction of merged hits distribution of dimuon pairs. The distributions

for different foreground/backgrounds have been shifted by a fixed number for better

visualization, noted on the plot.

where

Si =



+1 : one track leaves a hit on pad row

−1; both tracks leave a hit on pad row

0 : neither track leaves a hit on pad row,

(4.6)

and where i is the TPC read-out pad row number and Nhits
1 and Nhits

2 are the total

number of hits associated to each track. By construction, SL has a value between

-0.5 (when both tracks have exactly the same pad rows with hits, shown in Fig. 4.6(a)

and 1 (when two tracks have no hits on a same pad row, shown in Fig. 4.6 (b, c).

SL < 0.6 was found to remove the splitting effect [57] sufficiently. We can see from

Fig. 4.7 that only a small amount of pairs have SL > 0.6. The contribution to the
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final spectra is found to be negligible.

Another possible bias from the TPC track reconstruction is track merging, where

two tracks are reconstruct as one track. This causes a reduction of pairs at low relative

momentum, an opposite effect as in track splitting. A variable FMH (Fraction of

Merged Hits) was defined:

FMH =
Nhits

merged

Nhits
, (4.7)

where Nhits
merged is the number of hits that are considered as merged hits by the TPC.

Two hits are considered as merged if the closeness is beyond the TPC resolution. The

TPC spacial resolution in the inner sector is 0.8 cm in the X-Y plane, 3.0 cm in the Z

direction; The TPC spacial resolution in the outer sector is 1.4 cm in the X-Y plane,

3.2 cm in the Z direction. Different FMH cuts were compared, and it was found

that when FMH is below 10%, the merging contribution is negligible, indicating it

is sufficient to eliminate track merging effect [57]. Pair-wise cuts are summarized in

Tab. 4.4.

Table 4.4 : Muon Pair Selection

Cuts Range

|ηpair| < 1

Splitting Level < 0.6

Fraction of Merged Hits < 10%
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4.3 Results and Discussion

The dimuon invariant mass spectra was compared with contributions from hadronic

simulations, also know as the “cocktail simulations”. The cocktail includes the contri-

butions from the following decay channels, η → µµγ, η → µµ, η′ → µµγ, ω → µµπ0,

and φ → µµγ. The efficiencies are evaluated for each pT and η bin. The tracking

efficiency is estimated from embedding simulated, Monte Carlo muons into real event,

and compares the number of constructed muons and the number of embedded muons.

An example plot is shown in Fig. 4.9a. The TOF matching efficiency is estimated

from comparing the number of muons before TOF matching with number of muons

after TOF matching. An example is shown in Fig. 4.9b. The PID efficiency is es-

timated from fit functions and PID cuts, shown in Fig. 4.9c. These efficiencies are

calculated as a function of pseudorapidity and transverse momentum, and folded into

cocktail simulation shown in Fig. 4.10a.
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(a) (b)

(c)

Figure 4.9 : Dimuon efficiency corrections in Au + Au at
√
sNN = 200 GeV/c.

An example of tracking efficiency shown in Fig. 4.9a; an example of TOF matching

efficiency shown in Fig. 4.9b; an example of TOF PID efficiency shown in Fig. 4.9c.

We can see that the major component in the mass range is from η Dalitz decay

and dimuon decay channels, as shown by the purple curves. The second contribution,

which is from ω → µµπ0 is an order of magnitude smaller than from η. Figure 4.10b

shows the data to cocktail ratio, from which we can see the data has an excess at
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mass region 0.40 - 0.55 GeV/c2.
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Figure 4.10 : Dimuon invariant mass spectrum was obtained from STAR minimum

bias data at
√
sNN = 200 GeV in year 2011, shown by the red markers in the left panel.

The dashed lines show the hadronic contributions [58], from η, η′, ω, φ respectively.

The solid line shows the total contribution, without the ρ meson. As expected the

data show an excess over cocktails at 0.40 - 0.55 GeV/c2. The data-to-cocktails ratio

is shown in the right panel. The uncertainties are statistics only.

Based on the previous STAR publication [5], the η input in the cocktails has about

30% uncertainty. We use this as an estimated cocktail uncertainty, and get the excess

of data over hadronic cocktails, shown in Fig. 4.11. The integrated excess at 0.40-0.55

GeV/c2 has an significance of 3.5σ.

This is a first attempt to investigate dimuon production at low mass region us-

ing the TOF. Because muons have much less contribution from photon conversions
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Figure 4.11 : Dimuon excess in minimum bias data at
√
sNN = 200 GeV. The un-

certainties only include statistical uncertainties from data (shown by the error bars),

and 30% uncertainty in cocktail simulations (shown by the orange band), which is

estimated from previous STAR measurement [5]. The integrated excess between 0.40-

0.55 GeV/c2 has an significance of 3.5σ.

compared to electrons, dimuons are better tools to study the low mass excess than

dielectrons. In this proof of principle measurement, we indeed see an excess at the low

mass region. This excess might be related to the in-medium modified ρ contribution,

which has been related to chiral symmetry restoration at high temperature [59]. It

should be noted that systemic uncertainty study and better understanding on the

cocktails are still needed.
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Chapter 5

Muonic Atoms in Heavy-ion Collisions

As discussed in Sect. 2.1, in heavy-ion collisions, charged particles with high multi-

plicity are produced. The produced particles cease elastic interactions and freeze-out

when the inter-particle distance becomes large enough. In this high multiplicity en-

vironment, oppositely charged hadrons and muons were predicted to be bound by

Coulomb force and form muonic atoms [31], if they have very similar velocities. The

binding energies, which can be calculated from a hydrogen model with mass scaling,

are a few keV, e.g. 2.5 keV for pµ, 2.3 keV for Kµ, and 1.6 keV for πµ. The bound

states, being electrically neutral, travel in a straight line, unaffected by the magnetic

field, and then hit the beam pipe. The effective radiation length for a given material

consisting of a single type of nuclei can be approximated by the following expression:

Rlength =
716.4× A

Z(Z + 1)ln
287√
Z

/ρ, (5.1)

where A is the atomic mass number, Z is the atomic number of the nucleus, ρ is

the density of the material. STAR beam pipe is made of beryllium, which has the

effective radiation length is 35 cm. Aluminum has the effective radiation length of

9.0 cm (8.89 cm in PDG [13]). So the STAR beam pipe (0.030 inch) has about the
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same ionization power (0.0022) as the 0.0088 inch Aluminum foils (0.0025) [60]. The

beryllium beam pipe at STAR thus serves the same purpose as the aluminum foil

in the previously experiments mentioned in Sect. 2.3 — to disassociate hadrons and

muons in an atom. This disassociation process is shown in Fig. 5.1.

For a V 0 reconstruction at STAR, for instance K0
S reconstruction, where the decay

length is exponentially distributed, the reconstruction efficiency at very low pT is

≈ 1%. For beam pipe disassociation events from muonic atoms, the decay length is

not exponentially distributed, and thus will result in a even lower efficiency, making

V 0 method not feasible. In this analysis, we use the proximation that treats the

hadron and muon tracks from muonic atoms as primary tracks. The reason is that

the largest distance between the primary vertex and the muon helix in our kinetic

range is 0.8mm, which is beyond the TPC resolution. The invariant mass shift was

simulated and was found to be about 0.5 MeV/c2 (see Fig. 5.2), which is much less

than the granularity which we use in the next chapters (bin size 2.5 MeV/c2).

In this and the following chapters, we will discuss the muonic atom search in

centrally triggered data from Au + Au at
√
sNN = 200 GeV.

5.1 Data Set and Triggers

The dataset used in the muonic search is from Au+Au collisions at
√
sNN = 200

GeV collected by the STAR detector in 2010. Centrally triggered [40] events are used

to select events that have high charged particle multiplicities and thus maximize the
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Figure 5.1 : A sketch of a muonic atom event at STAR detector (not to scale, the

radius of the beam pile is enlarged for better demonstration). An atom was produced

well after the kinetic freeze-out, and then it travels straight to the beam pipe. After

the interaction with the beam pipe, the hadron and the muon are disassociated and

detected in the TPC and the TOF.

muonic atom yields. The central trigger in 2010 Au+Au 200 GeV collisions requires

a small signal in the ZDC detectors as well as a large multiplicity from the TOF. This

central trigger corresponds to the top 10% of the total hadronic cross section. Events

close to the center of the TPC along the beam direction are selected by requiring

ZTPC
vertex < 50 cm. The measured vertex along the beam direction (ZTPC

vertex) from the

TPC has a strong relation with the measured ZV PD
vertex from the VPD. Figure 5.3 shows
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Figure 5.2 : The Y-axis is the observable that will be discussed in Sect. 7.1. The effect

from momentum shift is found to be a smaller than the bin size 2.5 MeV/c2 [61].
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vertex (right).
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the ZTPC
vertex vs. ZV PD

vertex distributions. The distribution between the vertical lines on the

right panel of Fig. 5.3 is mainly from VPD resolution, which is tens of picoseconds,

corresponding to a few centimeters. The distributions outside of the lines are likely

from pileups. To reject possible pileup events, for a same event the Zvertex measured

from the TPC and the VPD need to be close: |ZTPC
vertex − ZV PD

vertex| ≤ 3 cm. Events

that are not at the center of the chamber on the X-Y plane are rejected by requiring√
(XTPC

vertex)
2 + (Y TPC

vertex)
2 < 2 cm, to reduce events from beam pipe interactions. All

event-level cuts are listed in Tab. 5.1.

Table 5.1 : Event Selection

Cuts Range

|ZTPC
vertex| < 50 cm

|ZTPC
vertex − ZV PD

vertex)| ≤ 3 cm√
(XTPC

vertex)
2 + (Y TPC

vertex)
2 < 2 cm

refMult ≥ 20

Figure 5.4 lists the number of events after the cuts are applied. We can see more

than 98% of the total events passed these cuts, and a total of 220 million events

contributed to the results. The reference multiplicity (refMult, discussed in Sect. 4.1)

distribution is shown in Fig. 5.5. As we can see, different from MB triggered events,

Central events have higher charged particle multiplicities. The small peak around 0

might be from trigger bias. We use refMult < 20 to remove the small peak. Due to
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Figure 5.4 : Number of events change with cuts ( note y-axis not starting form 0).

Cuts are applied from left to right. The percentage numbers show the fractions of

valid number of events after each cut.

low reference multiplicity, muons are not likely to be found in these events. We found

the final result is not affected with/without this cut.

5.2 Track Selections

Track-wise cuts are listed in Tab. 5.2. The TPC hit distributions are shown in Fig.

5.6. We can see that the number of TPC hits per track (nHitsF it) has an upper

limit of 45, which is set by the number of TPC pad rows. The number of hits

used for dE/dx determination (nHitsDedx) ranges from about 10 to 31, because

the “truncated mean” method was used in this data production [45]. nHitsMax is

the number of possible hits on pad rows, given a helix fit on that track. The ratio
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Figure 5.5 : Reference multiplicity distributions from central trigger events in

AuAu200 collisions from Run 10.

of nHitsF it to nHitsMax is required to be between 0.52 and 1.02, to reject track

splitting and to reject bad track fitting. The “comb-like” structures come from finite

number of hits, whose ratios will also have finite values and thus will be unevenly

distributed.

5.3 Particle Identification

Particles are identified based on energy-loss measurement from the TPC and the tim-

ing measurement from the TOF together. The muon momentum is limited to 0.15 -

0.25 GeV/c to ensure the purity of the sample. First a TPC cut −3 < Nσµ < −0.5
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Table 5.2 : General track quality selections

Cuts Range

Global DCA ≤ 1 cm

pprimaryT ≥ 0.15 GeV/c

η < 1

Charge |q| = 1

nHitsFit ≥ 20

nHitsDedx ≥ 15

nHitsFit/nHitsMax 0.52-1.02

YTOFLocal < 1.8 cm

is applied. The normalized ∆1/β distribution is calculated as follows:
∆β−1

β−1
=

β−1
TOF − β

−1
TPC

β−1
TOF

= 1 − β
√

1−m2/p2, where β−1
TPC is the TPC calculated β−1 by as-

suming a mass m for a particular particle species. It was found that the Student’s-T

function can better describe the shape of ∆1/β, possibly due to different number

of VPD tubes are mixed in the data. The 1/β distributions are then fitted with

two Student’s-T distributions for each momentum slice in Fig. 5.7. The Student’s-T

distribution is defined as:

fStudent′s−T (t) =

Γ

(
ν + 1

2

)
(
√
µπ)Γ

(ν
2

) (1 +
t2

ν

)−ν + 1

2
, (5.2)
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Figure 5.6 : Number of TPC hits, dE/dx hits, and nHits/nPossible distributions for

primary muon candidates.

where ν is the number of degrees of freedom and Γ is the gamma function. The lower

limit for
∆β−1

β−1
is set to be -0.04, and the upper limit is set so that the purity of the

sample, estimated from the fitting curves, is 99%. The upper limits are calculated for

five momentum slices, evenly distributed from 0.15 - 0.25 GeV/c. Then a polynomial
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function of momentum is used to fit these upper limits. The procedure is similar to

what is used in Sect. 4.1. The obtained function is

∆(1/β)upper−limit(p) = −1.2× 10−2p2 + 9.1× 10−1p− 3.6, (5.3)

as shown in the last panel of Fig. 5.7, represented by the curve. The tight cut at

higher momentum ( ∼ 0.22 GeV/c and above) is to insure the purity of the muon

sample.

The kaon and proton PID is similar to muon PID described in the previous para-

graph. By requiring similar velocities, the corresponding momenta for kaons and

protons/antiprotons are 0.7 - 1.17 GeV/c and 1.33 - 2.22 GeV/c respectively. Fig-

ure 5.8 shows the ∆1/β distribution as a function of momentum after a TPC cut

−2 < nσK/p < 2 for kaons and protons. The upper cut is set to be 0.04, and the lower

cut is set to be -0.04 if the purity is larger than 99%, except that at high momentum,

where the purity of the sample between (-0.04, 0.04) is lower than 99%, the upper cut

is then set base on the 99% purity requirement. All the point for different momentum

are then fitted with polynomial functions.
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Figure 5.7 : The ∆1/β distribution for muons after a TPC cut −0.5 < Nσµ < 3 for

central Au+Au at
√
sNN = 200 GeV/c. The red lines represent the fit for the muon

peak; the blue lines represent the fit for the pion peak; the black lines represents the

fit to the total distributions.
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Figure 5.8 : The ∆1/β distribution for kaons and protons after a TPC cut −2 <

nσK/p < 2. The colors represent Z-axis in log scale. The TOF lower cuts, represented

by the black curves, are determined by similar technique as in Fig. 5.7, and the upper

cuts are 0.04.
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Chapter 6

Muonic Atom Femtoscopy

The femtoscopic correlation method, which is used in this thesis, was first developed

by astronomers Hanbury-Brown and Twiss in 1950s [62]. In 1960, this technique, also

know as HBT method, was introduced to particle physics, to study the pion wave-

function symmetrization [63]. In heavy-ion physics, femtoscopic correlations have

been used to study the particle emission source size, for instance in references [64, 65].

In this chapter, we will discuss in detail how this correlation method is used to study

the muonic atom ionization, and determine the fraction of primordial muons from the

inclusive muons.

6.1 K-µ and p-µ Correlations

Femtoscopic correlations are studied as functions of k∗, which is defined as the magni-

tude of the momentum of either particle in the pair rest frame. k∗ can be calculated as

follows. We boost one of the two particles, with four-momentum p1, to pair velocity

β, with Lorentz factor γ =
1√

1− β2
[66], using the following equation:

p1
′ = L(β)p1, (6.1)
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where the Lorentz boost matrix L(β) is:

L(β) =



γ −γβx −γβy −γβz

−γβx 1 +
γ2

1 + γ
β2
x

γ2

1 + γ
βxβy

γ2

1 + γ
βxβz

−γβy
γ2

1 + γ
βxβy 1 +

γ2

1 + γ
β2
y

γ2

1 + γ
βyβz

−γβz
γ2

1 + γ
βxβz

γ2

1 + γ
βyβz 1 +

γ2

1 + γ
β2
z


, (6.2)

Then k∗ is the magnitude of the new three-momentum, i.e. k∗ = |~p ′1|.

The smaller the value of k∗ is, the closer the two particles are in phase space. The

correlation function is defined as the ratio of the k∗ distributions in a same event,

to the k∗ distributions in the mixed event, for which without explicit correlations.

The correlation as a function of k∗ shows how the interactions of the two particles

change with respect to their distance in phase space. The STAR collaboration has

thoroughly studied the K-π system [56] in Au + Au at
√
sNN = 130 GeV, in which

only the Coulomb interaction dominates, as shown in the upper panels of Fig. 6.1.

The correlation function of unlike-sign K-π is enhanced, approaching unity at lower

k∗; the correlation function of like-sign K-π is supressed, approaching unity at lower

k∗.

For non-identical particles, a leading particle can be selected. If the leading par-

ticle travels faster than the pair velocity, this case is denoted as C+(k∗), see Fig. 6.2.

The sign in the index is determined by the sign of ~vpair · ~pπ. If the leading particle

travels slower than the pair velocity, the sign of ~vpair · ~pπ is negative, and this case

is denoted as C−(k∗). If the average space-time emission points of the two particle
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Figure 6.1 : The correlation functions calculated from K-π system [56]. In the K-π

system, the interactions are dominated by Coulomb interactions. From the figure, we

see the interactions are stronger at low k∗ and gets weaker at higher k∗ where they

have very different momentum. The lower panels show the double ratios deviates

from unity, which indicates the space-time asymmetry for the production of kaons

and pions.

coincide, the two correlation functions, C+(k∗) and C−(k∗) are identical. Then we

have two scenarios.



61

Figure 6.2 : A sketch illustrating two cases. Case (a): particle 1 is produced closer to

the center of the system, and travels faster than particle 2. Particle 1 tends to “catch

up” with particle 2, resulting smaller distance and stronger correlations shown in (c).

Case (b): particle 1 travels slower than particle 2. Particle 1 tends to “move away”

from particle 2, resulting larger distance and weaker correlations shown in (d). As a

result the double ratio is larger than unity as shown in (e).

In the first scenario, the leading particle is produced closer to the center of the col-

lision. In the first case, the leading particle tends to catch up with the other particle.

The distance between them tends to be smaller and smaller, and the interactions tend

to be enhanced. The correlations tend to be enhanced too. In the second case, the

leading particle tends to move away from the other particle, and hence the correla-
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tions tend to be suppressed. Then in this scenario, the double ratio of the correlation

functions, C+(k∗)/C−(k∗), is not unity, and the deviation from unity is expected to

be similar (i.e. greater or smaller than unity) as the correlation function C(k∗) itself.

In the second scenario, the leading particle is produced further from the center

than the other particle. Using the the similar method, C+(k∗) and C−(k∗) are cal-

culated. However in this scenario, if the leading particle travels faster, C+(k∗) is

suppressed because the two particles tend to move away from each other. If the lead-

ing particle travels slower, C−(k∗) is enhanced at low k∗. So in this scenario, the

double ratio C+(k∗)/C−(k∗) also deviates from unity, but the trend, larger or smaller

than unity, is different from the correlation function itself.

This method was successfully used in previous measurements to probe the space-

time asymmetry of the emission of pions and kaons [56], as shown in the lower four

panels of Fig. 6.1. The correlation functions indicate the Coulomb interactions be-

tween the pion and the kaons, and it was found the pions are produced closer to

the center of the collisions than kaons. Similarly, in central Au + Au at
√
sNN , the

correlation in the K-π system, as a reference for the K-µ system, is calculated from

the same dataset and in a kinetic region similar as that of the K-µ system, shown in

Fig. 6.3. The procedures will be discussed in the following paragraph.

The distributions of k∗ for same events are obtained by pairing all possible K-µ

pairs within a given event. Mixed-event technique is similar to what has been used in

the invariant mass analysis. An event pool is generated by randomly selecting events
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with similar characteristics and cycling new events in the pool as the data processing

continues. When processing a new event, all candidate tracks in this event were

paired with candidates from the event pool. As a result, the number of pairs from

mixed events will be greater than the number of pairs from same events. This non-

physics enhancement is treated by normalizing k∗ distributions in a non-signal region.

The scale factor is the ratio of integrated same-event k∗ distribution to mixed-event

k∗ distribution. With the correlation functions C(k∗) well defined, the double ratios

C+/C− are calculated as described in before. The K-π system shows an enhancement

in the double ratio from like-sign correlations, and a suppression in the double ratio

from unlike-sign as expected. As was already explained, the origin of the non-unity

in double ratio comes from the Coulomb interactions between the kaons and pions,

which we find enhanced in C+(k∗) and suppressed in C−(k∗) because of the space-time

emission asymmetry of kaons and pions.

The correlation functions of the K-µ system are shown in Fig. 6.4. An enhance-

ment in unlike-sign pairs is observed, as is an suppression in like-sign. These indicate

the attractive Coulomb force in unlike-sign pairs and repulsive Coulomb in like-sign

pairs, respectively.

In the double ratio of K-µ system, overlaid on top of K-π system, we can distin-

guish two regions as shown in Fig. 6.6. On the right of the dashed line, where only

Coulomb interactions are expected [56] in both systems, the double ratios of the two

systems are consistent. This agrees with the existence of a Coulomb force, which is a
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Figure 6.3 : The correlation functions for K-π pairs in AuAu200 GeV central triggered

events.

k*
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
(k

*)

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

STAR Preliminary

CF (Like­Sign)

CF (Unlike­Sign)

Figure 6.4 : The correlation functions for K-µ pairs.



65

k* (GeV/c)
0 0.02 0.04 0.06 0.08 0.1 0.12

C
o

rr
e

la
ti

o
n

 F
u

n
c

ti
o

n

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

=200 GeV Central
NN

sAu+Au 

C (Like­Sign)
 (Like­Sign)+C
 (Like­Sign)­C

 (Like­Sign)­/C+C

(a)

k* (GeV/c)
0 0.02 0.04 0.06 0.08 0.1 0.12

C
o

rr
e

la
ti

o
n

 F
u

n
c

ti
o

n

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

=200 GeV Central
NN

sAu+Au 

C (Unlike­Sign)
 (Unlike­Sign)+C
 (Unlike­Sign)­C

(Unlike­Sign)­/C+C

(b)

Figure 6.5 : Correlation function according to pair directions in Au + Au collisions

at
√
sNN = 200 GeV. C+ stands for the case when the leading particle is faster, C−

stands for the case when the leading particle is slower. Panel (a) shows like-sign pairs;

panel (b) shows unlike-sign pairs.

necessary condition to form muonic atoms. On the left side of the dashed line, at very

low k∗, instead of a divergence, the double ratios of K-µ system shows convergence to

unity. This convergence agrees with disassociation of the hadron-muon system at the

detector beam pipe, where the hadrons and the muons are separated from a bound

state at the same space-time point.

6.2 π-π and π-µ Correlations

To explore the interactions between pions and muons, the π-µ correlations are studied.

Beside the correlations from Coulomb interactions between π and µ, an enhancement
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at low k∗. The convergence to unity of K-µ suggests the ionization at the beam pipe

after the production of muonic atoms. We can see the non-unity double ratio due to

space time asymmetry of K and µ production.

of the correlation functions for like-sign pairs was observed, as shown in Fig. 6.7. The

reason is that a large amount of muons from weak decays can pass the track selections,

and mix with the primordial muons. The π-π correlation functions were calculated

in Fig. 6.8. The enhancement in like-sign pairs from identical boson quantum effect

is observed and the behavior agrees with previously published STAR results. [57].

To study the influence of π-π correlations to π-µ correlations, we first calculate

the π-π correlation functions. In Fig. 6.8, we observe the strong enhancement in

like-sign, which comes from the quantum effect of identical particles.

The measured π-µ correlation has two contributions. One is from the correlation
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Figure 6.7 : Measured π-µ correlation functions. The like-sign correlation function is

above unity about 0.02 GeV/c to 0.05 GeV/c, which cannot be explained by Coulomb

interactions alone. The remaining of this section will explain how the π-π correlations

contribute to this shape.

between pions and primordial muons. The other is from the correlation between pions

and weak decay muons. The latter can be simulated from real data. This simulation

process is demonstrated in Fig. 6.9: one pion, taken from the real data, is weakly

decayed based on energy momentum conservation. Its artificial daughter particle µ

is denoted as µA. Then we calculate the correlation function between this µA and

another pion from the real data. The correlation functions of π-µA are shown in Fig.

6.10.

As a summary, these π-µ interactions inherit the interactions from π-π interac-

tions, which have two major sources, the electrostatic Coulomb interactions and quan-
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Figure 6.8 : Measured π-π correlation functions. In like-sign, the two contributions

from Coulomb and quantum effect from identical particles are mixed, and give the

correlation function an enhancement, making it exceed unity.

Figure 6.9 : The simulation process for π-µA correlations. The dashed line represents

the correlation between pions and muons from weak decays.

tum interference from identical pions. The latter generates a strong enhancement on

the correlation functions. We denote the three contributions to the correlation func-
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Figure 6.10 : π-µA correlation functions show the correlations between pions and

muons purely from weak decays. The like-sign correlation functions show the en-

hancement which is passed from pion decay kinematics.

tions as the follows:

• CA for correlations between pions and muons based on simulated weak decays

from real pions.

• CB for correlations between pions and inclusive muons, as is measured from

data.

• CC for correlations between pions and primordial muons.

The three contributions should satisfy the linear relationship: CB = αCC + βCA,

where α stands for the fraction of primordial muons from inclusive muons produced

from the collisions, and β stands for the fraction of other muons. correlations between
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pions and primordial muons, CC , is then estimated by π-π correlations, because of

the fact that pion mass and muon mass are fairly close. To avoid identical quantum

statistics enhancement, the correlation function from Coulomb between like-sign pairs

is estimated from reversed unlike-sign pairs 1/C ′C . The relationship then becomes:

CB = α/C ′C + βCA. (6.3)

The three contributions to the correlation functions are shown in Fig. 6.11.
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Figure 6.11 : Three correlation functions.

The relationship can be further verified by checking if the following linear relation-

ship between CBC
′
C and CAC

′
C holds: CBC

′
C = α+ βCAC

′
C . This relation is checked

in Fig. 6.12, the read line represents a linear fit to the data points.

The minimum χ2 fitting can be performed, with α and β being fitting parameters.

While the two parameters α and β should have an implicit requirement of α+ β = 1
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Figure 6.12 : Check the linear relation between CBC
′
C and CAC

′
C . The black line is

a linear fit to the data points.

(i.e. the total fraction should be unity), they were treated as free parameters during

in this fit. The value of χ2 is calculated from CB’s uncertainty:

χ2 =
∑
i

[(βCA,i + α/C ′C,i − CB,i)/σi]2, (6.4)

where index i stands for the bin number. At the minimum the partial derivatives of

the function are zero:

⇒


∑
i

(βCA,i + α1/C ′C,i − CB,i)/σiCA,i/σi = 0,

∑
i

(βCA,i + α1/C ′C,i − CB,i)/σi/C ′C,i/σi = 0,

(6.5)

from which α and β are solved and errors are propagated assuming the contributions

from CA, CB and CC are independent.

It should be noted that the particle tracks may suffer from track merging when
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they are constructed from the time projection chamber. If two particles have similar

trajectories, implying that they are close in momentum space, the detector may not

have enough spacial resolution to distinguish them and thus merge the two tracks.

When the simulated pion-to-muon decays are performed, missing pions from such

track merging cannot be recovered by any means. Consequently, by trying different

fitting ranges, we could not get a good fitting below 0.02 GeV/c. Thus the fitting

range is selected between 0.02-0.20 GeV/c, discarding the very low k∗ where the

missing track problem is significant. The fit results show the π-µ correlation function

from data, the two contributions, the fit result, i.e. fraction of primordial muons is

22.0±0.4%, shown in Fig. 6.13. The systematic uncertainties from different binning,

fit range, mass differences between π and µ will be discussed in the next section.

6.3 Systematic Uncertainties for Correlations

The systematic uncertainties were estimated from varying the independent parame-

ters used in various selections. The differences among the data from different cuts

were combined to get a total uncertainty. The cuts that were studied are Distance

of Closest Approach (DCA) between tracks and primary vertices, TPC hit points

(nHitsF it), TOF PID cut, and TPC energy loss points (nHitsDedx). Because the

TPC hit point cuts, nHitsF it and nHitsDedx, are positively correlated, changing

one cut will implicitly change the other cut. Instead these two cuts are changed si-

multaneously in order to obtain one combined contribution to the systematic error.
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Figure 6.13 : π-µ from data: measured π-µ correlation function; 1/C: reversed π-π

correlation function; A: simulated π-µdecay; the fit parameters α is the fraction of

primordial muons.

A detailed list of these cuts can be found in Tab. 6.1.

The correlation function change from different DCA cuts are shown in Fig. 6.14,

the absolute differences of the two variations from the standard DCA cut is averaged

and represented by the grey bands. These grey bands will be considered as systematic

uncertainties contributed from DCA selections. And other changes from cut variations

are shown in Fig. 6.15 and Fig. 6.16. The TOF identification (see Sect. 3.3.2) cuts

were varied to study the effect from hadron contamination. The loose TOF cut was

obtained from Gaussian model fits to the ∆1/β distributions. The Gaussian model

has a smaller tail compared to data and thus will bring in more contamination.

The distributions calculated from both cuts are shown in Fig. 6.15. The differences
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Cuts Range

Standard DCA < 1.0 cm

Tight DCA < 0.8 cm

Loose DCA < 1.2 cm

Standard nHitsF it > 20

Standard nHitsDedx > 15

Tight Hit Points nHitsF it > 25, nHitsDedx > 17

Loose Hit Points nHitsF it > 18, nHitsDedx > 13

Standard 1/β From Student’s-T fit

Loose 1/β From Gaussian Fit

Table 6.1 : Cut variations.
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Figure 6.14 : DCA variation for K-µ double ratios, like-sign on the left and unlike-sign

on the right. The solid markers represent stand DCA cut; the open circles represent

restricted DCA cut; the open squares represent wider DCA cut; the absolute differ-

ences of the two variations from the standard DCA cut is averaged and represented

by the grey bands.

between the two cuts will be included in the total uncertainty. As mentioned the two

hit-point cuts are highly correlated, i.e. a track with a large nHitsDedx cut tends to

have a large nHitsF it cut, and vice versa. To deal with these positive correlations,

the two cuts were varied at the same time, as shown in Fig. 6.16.

The total relative uncertainties are then added in quadrature: σtotal sys. =
∑
i

σ2
i,sys,

where different index represents a different set of cuts. The contributions from each

cuts and the total uncertainties are shown in Fig. 6.17.

The double-ratio correlation functions with systematic errors (shaded bands) are
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Figure 6.15 : Double ratio changes from TOF cut variations, like-sign on the left

and unlike-sign on the right. The differences from the two cuts will be included in

systematic uncertainties.

shown in Fig. 6.18a. The correlation functions for p-π and p-µ pairs are plotted in

Fig. 6.18b. For each K-µ data point, the number of standard deviations (i.e. σ) away

from unity (Nσ) is plotted as a function of k∗, shown in the left panel of Fig. 6.19.

Smaller Nσ indicates the double ratio is closer to unity; larger Nσ indicates the double

ratio is far away from unity. As we can see in the left panel, for Kµ system, the Nσ

shows that the double ratios are initially close to unity (i.e. small Nσ) at low k∗, then

deviates from unity (larger Nσ) at higher k∗. Due to limited number of protons, we

obtained larger error bars for pµ atoms in Fig. 6.18a. So we do not observe a clear

result whether the p-µ double ratios converge or diverge. As a result, there is no

obvious hump around k∗ =0.02 GeV/c as in K-µ.

The sources of systematic uncertainty for the fraction study (discussed in Sect. 6.2)
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Figure 6.16 : TPC-hit-point (nHits) variation for K-µ double ratios, like-sign on the

left and unlike-sign on the right. The solid markers represent stand nHits cut; the

open circles represent restricted nHits cut; the open squares represent wider nHits

cut; the absolute differences of the two variations from the standard nHits cut is

averaged and represented by the grey bands.

are: fitting ranges, binning effects, and mass difference between the pion and the

muon. The muon mass (105.66 MeV/c2) is smaller than the pion mass (139.57

MeV/c2) [13]. The correlation function of π-µ would be stronger than π-π by a

factor of the reduced masses of the two systems. This factor is M red
ππ /M

red
πµ = 1.16.

The measured data points are first fitted by a function 1 − a × e−bx (a, b are fit-

ting parameters); then the fit parameters are taken out and set to a scaled function

1− a× e−1.16bx, implying the x-axis (k∗) is scaled by the reduced mass factor; then a

new histogram calculated from the scaled function is used to get the fitting parameter

α in Eq. 6.3. The fitting and scaling functions are shown in Fig. 6.20. The fit result
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Figure 6.17 : Systematic uncertainties for double ratios of K-µ system (left), and

antimatter K-µ system (right), like-sign on the left and unlike-sign on the right.

Solid circles represent individual contributions from DCA, TOF contamination, and

TPC hits. Open squares represents the total systematic uncertainties, which are are

from quadrature sum of individual contributions.

with mass scaled correlation function is shown in Fig. 6.21. We vary the fitting range

at higher k∗, as shown in Fig. 6.22. The fitting with doubled bin numbers is also

performed, as shown in Fig. 6.23. The changes from these varied cuts to standard

cuts will be taken into account as systematic uncertainties. We choose α as the

value 22.6%, which appears most frequently in the fit results from all these cases.

The statistical uncertainties are quadrature sum of individual statistical uncertain-

ties. The systematic uncertainty are chosen so that the α values in all these cases fall

within the upper and lower limits. Combining all these cases, we found the fraction

of primordial muons is 22.6 % ± 0.9 %(stat.) −0.6
+4.5 %(sys.).
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Figure 6.18 : Double ratios for Kµ(left) and pµ(right) system, statistical errors are

shown by bars, systematic uncertainties represented by shaded bands.
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Figure 6.19 : Nσ from unity for the double ratios of Kµ (left) and pµ(right).
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Figure 6.20 : Measured π-µ correlation function, fitted by reduced mass scaling of

the π-π correlation function. A fit function was first obtained from fitting the data

points; then scaled by the mass factor 1.16 along x-axis.
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Figure 6.21 : Reduced mass scaling of the correlation function. The correlation

function is first corrected by the mass factor 1.16, and then used for fitting π-µ

correlation function.
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Figure 6.22 : Measured π-µ correlation function, fitted by π-π correlation function

and simulated π-µdecay in a different fitting range shown in the figure.
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Figure 6.23 : Measured π-µ correlation function, fitted by π-π correlation function

and simulated π-µdecay in a different fitting range shown in the figure.
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Chapter 7

Muonic Atom Invariant Mass Spectra

The muonic atom invariant mass can be reconstructed from the hadrons’ and the

muons’ ’kinetic information. In this chapter, we will discuss in details the invariant

mass reconstruction, combinatorial background subtraction, Coulomb rejection, and

yield measurement.

7.1 Invariant Mass Spectrum

The atom invariant mass spectrum is constructed by pairing hadrons and muons and

calculate their pair invariant mass with Eq. 4.3. The “combinatorial background”

from random pairing is estimated similarly as in Sect. 4.2, except here a hadron and

a muon are used.

The raw mass spectrum, including combinatorial background, is constructed by

pairing a hadron and a muon with opposite electric charges (unlike-sign method) from

the same event. The background is constructed in two ways: a mixed-event method,

in which a hadron and a muon with opposite electric charges from two different

events are paired; and a like-sign method, in which a hadron and a muon with the

same electric charge from a same event are paired. Events with different vertices pass

different geometry of the detector. Thus only events with similar vertex positions
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should be mixed. We make 20 slices (bins) along the Z-direction between -50 to 50

cm, and only mixed events that fall into the same bin. It was found that more bins

do not improve or change mass spectrum. We also require that only events with the

same magnetic field setting can be mixed. We do not require a multiplicity selection

since the events are from central trigger. The distributions from mixed events are

then normalized with similar method in references [4, 5]. The method is given by:

ahm =

∫
NR
LShm(mhm)dmhm∫

NR
MEhm(mhm)dmhm

, (7.1)

MEnorm
hm (mhm) = ahmMEhm(mhm), (7.2)

where mhm represents the invariant mass of hadron-muon pairs, LS represents from

same-event like-sign pairs, ME represents from mixed-events, and the indices h and

m (can take the value “+” or “−”) represent the charge of the hadron and muon,

respectively. The invariant mass of various types of hadron-muon pairs are calculated.

The raw count distributions are shown in Fig. 7.1, and particularly the same-event

K+µ− distribution and its like-sign background, corrected from acceptance difference,

are shown in Fig. 7.2.

For a similar reason explained in Sect. 4.2, the acceptance difference between like-

sign and unlike-sign need to be corrected. The acceptance correction factor is the ratio

of unlike-sign and like-sign pairs in mixed-event, i.e.
ME+−√

ME++ME−−
for atoms. The

acceptance correction factors for positive-negative pairs and negative-positive pairs

are shown show in Fig. 7.3. Then the geometric mean
√
LS++LS−− of the like-sign
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Figure 7.1 : The raw counts of different types of hadron muon invariant mass dis-

tributions. SE stands for Same-Event; ME stands for Mixed-Event; LS stands for

Like-Sign; the lower case letters p/n stands for the charge, positive/negative of the

hadron and muons.

in same event are corrected by this factor to get the corrected like-sign background:

LS+−(corrected) =
√
LS++LS−−

ME+−√
ME++ME−−

, (7.3)

where the notations are similar as in Eq. 7.1. Similarly, for anti-matter atoms, the

corrected like-sign background is:

LS−+(corrected) =
√
LS++LS−−

ME−+√
ME++ME−−

. (7.4)
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Figure 7.2 : The same-event K+µ− distribution and its like-sign background (accep-

tance corrected). The signal hides in the differences between the two distributions.

After the acceptance correction, the two backgrounds are compared in Fig. 7.4,

and are found to be roughly consistent. The differences between the two will be

discussed in the next section.

As discussed in Chap. 5, the binding energy for muonic hydrogen is orders of

magnitude lower than the kinetic energy in heavy-ion experiments. When the atoms

are ionized by the beam pipe, the binding energy is canceled by the excitation from

atom-beam pipe interaction. As a result, the peak from the two daughter particles

are expected to appear at zero net mass, i.e. δm = mpair−mµ−mhadron = 0 GeV/c2.

In Fig. 7.5, method 1, represented by the red markers, shows the signal-to-
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Figure 7.3 : The acceptance correction factors for atoms, i.e. positive-hadron and

negative-muon pairs, and anti atoms, i.e. negative-hadron and positive-muon pairs.

background ratio from the like-sign method; and method 2, represented by the blue

markers, show the signal-to-background ratio from mixed-event method. Sharp peaks

are observed at zero net mass for both methods. From this figure, we can see that the

signal-to-background ratio extracted from like-sign method is systematically higher

than the signal extracted from mixed-event method. This is explained by the Coulomb

effect. In the unlike-sign method, two particles carry opposite charges, which results

in an attractive Coulomb force and thus enhances the mass distribution (larger than

if there were no Coulomb), especially at the low mass region. In contrast, in the

like-sign method, the repulsive Coulomb force from the same charge suppresses the
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Figure 7.4 : The like-sign and mixed-event backgrounds are compared. The shapes

have less than 2% differences, which will be discussed in the next section.

mass distributions at the low mass region. In the mixed-event method, there is no

Coulomb effect for hadron-muon pairs. As a result, when the signal-to-background

ratio is calculated, like-sign is subtracted from the unlike-sign and the results gets

enhanced compared to mixed-event. The difference of the two methods are shown by

the black markers in Fig. 7.6. We can see the distribution between 0 and 0.2 GeV/c

is systematically greater than 0, which indicates the existence of Coulomb effects.

Similarly, the signal to background ratio and the background difference for p-µ

pairs are shown in Fig. 7.7. The p-µ system possibly has additional contributions

from hadronic resonance decays such as ∆ → p + π → p + µ + ν, and thus is more
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Figure 7.5 : Ratios in K-µ pairs. Method 1, represented by the red markers, shows

the signal-to-background ratio from like-sign method; method 2, represented by the

blue markers, shows the signal-to-background ratio from mixed-event method.
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Figure 7.6 : The difference between two background methods, normalized by mixed-

event in K-µ pairs. The difference indicates the existence of Coulomb effects.
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complicated.

]2m [GeV/cδ
0 0.05 0.1 0.15 0.2

S
ig

n
a
l/

B
a
ck

g
ro

u
n

d
­1

­0.02

­0.01

0

0.01

0.02

0.03

0.04

LikeSign

UnlikeSign­LikeSign
Method 1: 

MixedEvent

UnlikeSign­MixedEvent
Method 2: 

A
T

O
M

 M
A

S
S

=200 GeV CentralNNs in Au+Au µp­

]2m [GeV/cδ
0 0.05 0.1 0.15 0.2

D
if

fe
re

n
ce

­0.02

­0.01

0

0.01

0.02

0.03

0.04

: 1.233 (> 0)2Sum over bins from 0 to 0.02 GeV/c

MixedSign

MixedEvent­LikeSign
Bkg. Diff.: 

=200 GeV CentralNNs in Au+Au µp­

Figure 7.7 : The pair invariant mass signal-to-background distributions of Θ show

peaks at the atom masses. The left panel shows the signal to background ratio from

like-sign method and mixed-event method for K-µ+ pairs. The right panel shows the

difference of like-sign method and mixed-event method for p-µ+ pairs.

As previously discussed, the Coulomb effect in like-sign pairs and unlike-sign pairs

has opposite effects on the mass distributions. As a result, the following observable

Θ(δm) is adopted to cancel the Coulomb effect and preserve the signal:

Θ(δm) = UL(δm)LS(δm)/ME(δm)2 − 1 (7.5)

where UL(δm)LS(δm) stands for the product of unlike-sign and like-sign, which

cancels the Coulomb effect, and ME(δm) stands for mixed-event for normalization.

In Fig. 7.8, we observe a sharp peaks at zero net mass after Coulomb cancelation.

The error bars show the statistical uncertainties only (systematic uncertainties will

be discussed in the following section). The signal is remains persistent after Coulomb
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rejection in both K-µ and p-µ systems and their antimatter systems. The distribution

at higher mass is flat, indicating a good background determination from the methods

described above.
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Figure 7.8 : The Θ distributions show peaks at the atom masses for p-µ− and p̄-µ+

pairs (left panel) and for K−-µ+ and K+-µ− pairs (right panel). The x-axis is the

mass difference between the pair invariant mass and the sum of hadron and muon

mass: δm = mpair −mhadron −mmuon.

7.2 Systematic Uncertainties for Invariant Mass Spectra

The systematic uncertainties are estimated similarly as in Sect. 6.3. The list of

these cuts can be found in Tab. 6.1. The signals from DCA variations are shown in

Fig. 7.9. The average of the absolute values of the differences, which are shown by

the grey bands, will be quoted as systematic uncertainties. The effect from hadron

contamination from TOF PID is studied by choosing different fit functions, Gaussian
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or Student’s-T function. The differences between the two cuts will be included in the

total uncertainties. The contribution from the number of TPC hits is as shown in

Fig. 7.11. The grey bands are from the average of absolute differences between varied

cuts and the default cuts, and will be included in the systematic uncertainties.
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Figure 7.9 : The changes of Θ(δm) of K-µ system from DCA variation. Atom system

is shown on the left and antimatter atom system on the right. The solid markers

represent stand DCA cut; the open circles represent restricted DCA cut; the open

squares represent wider DCA cut; the absolute differences of the two variations from

the standard DCA cut is averaged and represented by the grey bands.



92

]
2

m [GeV/cδ

0 0.05 0.1 0.15 0.2

 m
)

δ(
Θ

­0.01

0

0.01

0.02

0.03

0.04

Restrictive TOF cut

Wider TOF cut

=200 GeV Central
NN

sAu+Au 

]
2

m [GeV/cδ

0 0.05 0.1 0.15 0.2

 m
)

δ(
Θ

­0.01

­0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Restrictive TOF cut

Wider TOF cut

=200 GeV Central
NN

sAu+Au 

Figure 7.10 : Θ(δm) changes from TOF cut variations. Atom system is shown on the

left and antimatter atom system on the right. The differences from the two cuts will

be included in systematic uncertainties.

The uncertainties from different variations are considered to be independent, and

are added in quadrature to get the total uncertainties, shown in in the left panel of

Fig. 7.12 by the solid circles. The same uncertainty study is performed for antimatter

atoms, shown in the right panel of Fig. 7.12. We can see at the low δm region,

the number of hit points contributes the most to the total systematic uncertainties.

The Θ(δm) distributions with the statistical uncertainties (bars) and the systematic

uncertainties (bands) are presented in Fig. 7.13.
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Figure 7.11 : The changes of Θ(δm) of K-µ system from TPC-hit-point (nHits)

variation. Atom system is shown on the left and antimatter atom system on the right.

The solid markers represent standard nHits cut; the open circles represent restricted

nHits cut; the open squares represent wider nHits cut; the absolute differences of the

two variations from the standard nHits cut is averaged and represented by the grey

bands.

]2m [GeV/cδ

­0.01 0 0.01 0.02 0.03 0.04

U
n

ce
rt

a
n

it
y

­0.003

­0.002

­0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

DCA TOF cut

Hit Points Total Uncertainty

=200 GeV Central
NN

sAu+Au 

]2m [GeV/cδ

­0.01 0 0.01 0.02 0.03 0.04

U
n

ce
rt

a
n

it
y

­0.003

­0.002

­0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

DCA TOF cut

Hit Points Total Uncertainty

=200 GeV Central
NN

sAu+Au 

Figure 7.12 : Systematic uncertainties of Θ in K-µ system from DCA, TOF, and Hit

Points variations. Atom system is shown on the left and antimatter atom system

on the right. The Total uncertainty (solid circles) is the quadrature some of the

individual contributions. We can see that number of hit points contributes the most

at low δm.
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Figure 7.13 : Θ distributions for K-µ atoms (left) and p-µ atoms (right). The error

bars stand for statistical uncertainties, and the color bands stand for systematic

uncertainties.

7.3 Muonic Atom Yields from Measurement

In this section, we determine the yield of produced atoms from invariant mass study in

Sect. 7.1. The Θ(δm) distribution, essentially the signal-to-background distribution,

of K-µ (“Before residual substraction”) pairs and K-π (“Residual distribution”) pairs

is shown in Fig. 7.14. K-π system is flat in most of the signal region, except the first

bin. Because K-π system is known to have only Coulomb interactions, we treat the

Θ(δm) in K-π system as the residual from Coulomb cancelation. After the residual

is subtracted, the atom signal (“Signal”) is shown by the red markers in Fig. 7.14;

the antimatter signal is shown by the red markers in Fig. 7.15.

Since the combinatorial distributions in mixed events have no physics correlations,

the mixed-event distributions can be used as a pure background for the yield extrac-
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Figure 7.14 : The Θ distributions for Coulomb residual (in blue); the Θ distributions

for K-µ system, before (black) and after (red) residual subtraction.
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Figure 7.15 : The Θ distributions for antimatter Coulomb residual (in blue); the

Θ distributions for antimatter K-µ system, before (black) and after (red) residual

subtraction.

tion. The mixed-event distributions are shown in Fig. 7.16. The Θ distribution after

residual correction is then multiplied by the mixed-event background to get the atom

yield, shown in Fig. 7.17.
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Figure 7.16 : The mixed-event distributions for K+-µ− and K−-µ+.
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Figure 7.17 : The K-µ atoms and antimatter atom mass spectra. The bars represent

statistical uncertainties, and the bands represent systematic uncertainties.

With a total of 220 million central events, equivalent to 220 million top 10% most

central events, the number of K+ - µ− candidates we get from this measurement is

(1.87± 0.62(stat.)± 0.74(sys.))× 103, with the significance of 1.9σ, and the number

of antimatter K - µ candidates is (2.12 ± 0.41(stat.) ± 0.53(sys.)) × 103, with the

significance of 3.2σ.
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In the invariant mass distribution of the p-π system, see Fig. 7.18), we observe a

peak around δm around 35 MeV/c2, which is due to the Λ baryon decay to a proton

and a pion. Following the similar procedure as in K-µ, we subtract the residual

background in Fig. 7.19 (for pµ atoms), and in Fig. 7.20 (for antimatter pµ atoms).

Similarly as in K-µ, the residual subtracted signal is then multiplied by mixed-event

to get the atom candidates. The mass spectra are shown in Fig. 7.17. The
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Figure 7.18 : Invariant mass distributions for proton-π pairs. The peak around 35

MeV/c2 is from Λ to pπ decay.

number of muonic hydrogen candidates in 220 million events from this measurement

is (1.97±0.48(stat.)±0.64(sys.))×103, with the significance of 2.5σ, and the number of

antimatter muonic hydrogen candidates is (1.28±0.27(stat.)±0.38(sys.))×103, with

the significance of 2.7σ. Except for K+-µ− atoms, the significance for all the atoms is

above 2σ. It should further be noted that these atom yields are all within the STAR

acceptance and have not been corrected for any efficiency losses due to e.g. particle
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Figure 7.19 : The Θ distribution for atoms from p - π pairs are used as residual

background. The atom signal is shown in the shaded area after residual subtraction.
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Figure 7.20 : The Θ distribution for antimatter atoms from p - π pairs are used

as residual background. The atom signal is shown in the shaded area after residual

subtraction.

identification. A summary of atom yields within STAR acceptance, normalized to

number of events, and their respect significances can be found in Tab. 7.1.
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Figure 7.21 : The p-µ atoms and antimatter atom mass spectra.

Table 7.1 : Normalized muonic atom yields per central Au+Au event at
√
sNN = 200

GeV within STAR acceptance. These results have not been corrected for efficiency

losses.

Muonic atom
Yield/10−6

Uncertainty/10−6

Significancestat. syst.

pµ− 9.0 2.2 2.9 2.5σ

pµ+ 5.8 1.2 1.3 2.7σ

K+µ− 8.5 2.8 3.4 1.9σ

K−µ+ 9.6 1.9 2.4 3.2σ
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Chapter 8

Comparison with Measured Hadron and Muon

Yields

We discussed in Sect. 2.3 that it was proposed that atom yields can be estimated from

hadron and muon yield. Estimations for Au+Au at
√
sNN = 200 GeV has been done

by Kapusta and Mocsy [32], and also by STAR in the Decadal Plan [33]. It should

be noted that these estimations can only be a guidance because the muon spectra

are from pion spectra scaled by arbitrary factors. In the first half of this chapter,

we conduct the yield relation between atom and individual particles, following refer-

ences [31, 32]. The second half of this chapter uses the actually measured hadron and

muon yield as the input spectra, and obtains predicted muonic atom yields. If we

ignore the interactions between the collision point and the beam pipe, the hadrons

and muons from muonic atoms are expected to suffer from exactly the same efficiency

loss as those particle not from atoms. This allows us to directly compare the results

in Sect. 7.3 to the calculations in this chapter.

Assuming Aatom = aatom/
√
εatom is the quantum mechanical amplitude of the

atom, aatom is the Lorentz invariant amplitude, and εatom is the energy of the atom,

we get the invariant yield distribution:

d2N

2πpT,atomdpT,atomdyatom
=

1

(2π)3
|aatom|2 (8.1)
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Similarly, the joint distribution of hadrons and leptons are given by

d2Nh

2πpT,hdpT,hdyh

d2Nµ

2πpT,µdpT,µdyµ
=

1

(2π)6
|ahµ|2 (8.2)

where ahµ = Ahµ
√
εhεµ is the invariant joint amplitude of hadrons and a muons. Take

the ratio of Eq. 8.1 and Eq. 8.2

(
d2Natom

2πpT,atomdpT,atomdyatom
)/(

d2Nh

2πpT,hdpT,hdyh

d2Nµ

2πpT,µdpT,µdyµ
) = (2π)3 |aatom|2

|ahµ|2
(8.3)

The amplitude for a hadron and a muon to form an atomic state n and a total

momentum ~p is given by [31]

Aatom(n, ~p) =
∑
~q

Ahµ(mh~p/matom + ~q,mµ~p/mµ − ~q)ΨL
n(~q)∗ (8.4)

Where ΨL
n(~q)∗ is the Fourier transform of the spatial wave function ΨL

n(~r) of the

relative coordinate in atomic state n in the laboratory frame, and matom = mπ +mµ

is the rest mass of the atom (neglecting the small binding energy). Considering the

relative momenta is small |~q| � |~p|

Aatom(n, ~p) ≈ Ahµ(mh~p/matom,mµ~p/mµ)ΨL
n(~r = 0)∗ (8.5)

Note that the collision volume (a few fm) is much smaller than the radius of the atoms

(hundreds of fm). Only s-states can be formed with appreciable probability [31]. The

wave function at the origin in the atom center-of-mass frame with principal quantum

number n is given by

ψn(0) = ψLn (~r = 0)
√
matom/εatom = (mredα/n)3/2/

√
π, (8.6)
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where mred =
mhmµ

mh +mµ

is the reduced mass of the hadron-muon system.

Note that in a hydrogen-like atom, the relative velocity vrel of the hadron and

the muon is the Bohr velocity αc/n (α being fine structure constant), which is much

smaller than typical velocity of a particle in heavy-ion collisions. Thus the relative

velocity of the two satisfies . ac. This gives the approximation

~ph/
√
p2 +m2 ≈ ~pµ/

√
p2 +m2

µ, (8.7)

which gives εhεµ/ε
2
atom = mhmµ/m

2
atom = mred/matom. So we get

Aatom = Ahµ
(mredα/n)3/2/

√
π√

matom/εatom
(8.8)

aatom
ahµ

=

√
εatom
εhεµ

(mredα/n)3/2/
√
π√

matom/εatom
(8.9)

Substitute Eq. 8.9 into Eq. 8.3:

(
dNatom

2πpT,atomdpT,atomdyatom
)/(

dNh

2πpT,hdpT,hdyh

dNµ

2πpT,µdpT,µdyµ
) (8.10)

= (2π)3 ε
2
atom

εhεµ

(mredα/n)3/π

matom

(8.11)

= 8π2m
2
atom

mhmµ

(mredα/n)3

matom

(8.12)

= 8π2m2
red(α/n)3 (8.13)

Sum over n to take into account of all states:

dNatom

2πpT,atomdpT,atomdy
= 8π2ζ(3)m2

redα
3 dNh

2πpT,hdpT,hdyh

dNµ

2πpT,µdpT,µdyµ
(8.14)

where ζ(3) =
∑
n

n−3 = 1.202



103

Using the measured muon and kaon yields that pass our track selections as input,

we can use the Eq. 8.14 to get the expected yield of atoms. The product on the

right-hand side needs to be calculated bin-by-bin. The y dimension has the same

binning, and the pT binning is different for the three distributions, with the pT bin

widths proportional to their masses, as required by Eq. 8.7.

First we fill the histogram of pT vs. rapidity distribution of negatively charged

muons, weighted by
1

2πpT,µ
. The distribution is scaled by NeventdpTdy to get the

muon factor
1

Nevent

dNµ

2πpT,µdpT,µdyµ
shown on the left hand side in Eq. 8.14. The plot

is shown in Fig. 8.1a. There are 500 × 500 bins in this plot, within −1 < y < 1

and 0.15 GeV/c < pT <0.25GeV/c. The requirement of each track having a TOF

hit caused the lower boundary around pT = 0.16 GeV/c. The cut on momentum less

than 0.25 GeV/c causes the upper boundary. The projected plots to pT is shown

in Fig. 8.2b. Similarly, the K+ distribution in phase space
1

Nevent

dNh

2πpT,hdpT,hdyh
is

shown in Fig. 8.2a, and its pT spectra is shown in Fig. 8.2b.

The last term in Eq. 8.14 2πpT,atomdpT,atomdy is determined by the pT of the atom

in current bin, the bin width in the atom histogram, and the rapidity width in the

atom histogram. The contents and errors are taken and multiplied bin-by-bin with

the coefficient factor calculated above. The results were filled in a new histogram

shown in Fig. 8.3a, which is the left term in Eq. 8.14. Note that this histogram has

500 × 500 bins within −1 < y < 1 and 0.85 GeV/c < pT < 1.42 GeV/c, based on the

same momentum relation.
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Figure 8.1 : µ− phase space, weighted by
1

2πpT,µ
. The left panel shows pT vs. rapidity

distribution. The right panel shows pT distribution.
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Figure 8.2 : K+ phase space, weighted by
1

2πpT,µ
. The left panel shows pT vs. rapidity

distribution. The right panel shows pT distribution.
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The distribution dNatom is then scaled by Nevent to get the count distribution

dNatom for atoms, shown in Fig. 8.3a and Fig. 8.3b. The sum over all non-zero bins

give the yield from K+-µ− atoms: 50.7±0.4 from a total number of 220 million central

events. Taking into account of the fraction of primordial muons (see Sect. 6.3), the

expected yield for K+-µ− atoms is 11.4 ± 0.4 (stat.) −0.3
+2.3 (sys.). Similarly, dNanti−atom

is shown in Fig. 8.4a and Fig. 8.4b. The integral over the whole range give the yield

from K−-µ+ atoms: 37.1±0.3. Taking into account of the fraction of primordial

muons, the yield for K−-µ+ atoms is 8.3 ± 0.3 (stat.) −0.2
+1.7 (sys.).
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Figure 8.3 : Kµ atom spectra. The left panel shows pT vs. rapidity distribution. The

right panel shows pT distribution.

The proton spectrum has a contribution from weak decay feed down, mainly from

Λ. These protons from weak decays cannot form atoms. Previous publication shows

that feed-down contributions decrease rapidly as a function of pT [69]. The proton
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Figure 8.4 : Antimatter Kµ atom spectra. The left panel shows pT vs. rapidity

distribution. The right panel shows pT distribution.

feed-down in d+Au at
√
sNN = 200 GeV is 0.04±0.04 at pT = 0.975 GeV/c, in Au+Au

62.4 GeV is 0.01±0.01 at pT = 0.975 GeV/c. The proton range in this measurement

is at even higher pT , 1.33-2.22 GeV/c. The feed-down contribution should be on the

order of 1% or less. Similarly as the previous kaons, the distributions for protons are

shown in Fig. 8.5a and Fig. 8.5b. The proton yields are lower than the kaon yields,

and shape also shows a larger slope at lower pT , which results in lower pµ atom yields:

5.5±0.6 for pµ atoms, 4.4±0.5 for antimatter pµ atoms from a total number of 220

million central events. The atom and antimatter atom yields are shown in Fig. 8.6

and Fig. 8.7. Considering previously mentioned fraction of primordial muons, we get

the yields 1.2 ± 0.1 (stat.) −0.0
+0.2 (sys.) and 1.0 ± 0.1 (stat.) −0.0

+0.2 (sys.) for pµ atom

and antimatter pµ atom, respectively. The yields are summarized in Tab. 8.1. Note
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that the production rate, normalized to the number of events (200M) is in the order

of 10−8 to 10−7 based on a basic estimate of the detection efficiencies ∗. This is of

the same order of magnitude as the previous estimates in [31, 32]. However, these

estimates are still 2-3 orders of magnitude lower than our muonic atom measurements

shown in Sect. 7.3, and summarized in Table 7.1.
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Figure 8.5 : Proton phase space, weighted by
1

2πpT,µ
. The left panel shows pT vs.

rapidity distribution. The right panel shows pT distribution.

In this chapter, we calculated Kµ atom yield based on a simplified wave function

overlap picture. The calculation is found to be orders of magnitude lower than the

actual measurement in Sect. 7.3. This calculation has the assumption that hadrons

∗The order of magnitude for the combined efficiency which involves track reconstruction and

particle identification is (0.5)2[TOF] × (0.5)2[TPC] × 0.3[µ TPC pid] × 1.0[hadron TPC pid] ×

0.5[µ TOF pid]× 1.0[hadron TOF pid] ≈ 10−2.
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Figure 8.6 : pµ atom spectra. The left panel shows pT vs. rapidity distribution. The

right panel shows pT distribution.
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Figure 8.7 : Antimatter pµ atom spectra. The left panel shows pT vs. rapidity

distribution. The right panel shows pT distribution.
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Table 8.1 : Muonic atom yields in central Au+Au event at
√
sNN = 200 GeV from a

coalescence calculation.

Muonic atom Yield

pµ− 1.2 ± 0.1 (stat.) −0.0
+0.2 (sys.)

pµ+ 1.0 ± 0.1 (stat.) −0.0
+0.2 (sys.)

K+µ− 11.4 ± 0.4 (stat.) −0.3
+2.3 (sys.)

K−µ+ 8.3 ± 0.3 (stat.) −0.2
+1.7 (sys.)

and muons are independently produced in a same event. This might suggests that we

may need to reconsider the original assumptions that lead to Eq. 8.14. For instance,

due to radial flow, or jet physics, the momentum of the hadron and the muon could

be highly correlated on a event-by-event basis, and thus the production rate is highly

enhanced.
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Chapter 9

Summary and Outlook

Leptons, such as muons, do not have final state strong interactions, and therefore can

carry more direction information about the hot nuclear matter. This thesis focuses on

low momentum muon physics with the TPC/TOF detector at the STAR experiment.

This thesis presents the first STAR’s low mass dimuon spectrum from the Au+Au

minimum bias dataset at
√
sNN = 200 GeV collected in 2011. Low momentum muons

identified by the TOF detector, which are outside of what the MTD can reach, are

used in this study. Although limited by statistics, the data show a possible excess over

hadronic cocktail simulations, similarly as the result from NA60 experiment. The ex-

cess might be explained by model calculations that include in-medium ρ and a1 chiral

symmetry restoration. Encouraged by this proof of principle measurement, several

improvements are needed, ranging from better understanding the hadron cocktail

simulations, systematic uncertainty study, and more statistics.

This thesis also presents the search results on the muonic hydrogen and the Kµ

atom from Au+Au collisions at
√
sNN = 200 GeV, based on a dataset of 220 centrally

triggered events. This is the first measurements of antimatter pµ atom and the Kµ

atom. The muons in these muonic atoms could be helpful with revealing the properties

of the hot medium because they are produced in early stages of the collision. The
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correlation functions and invariant mass spectra of the atoms have been studied.

The correlation functions suggest muonic-atom ionization occurs at the beam pipe.

A strong quantum effect between pions largely influences π-µ correlation functions.

And these correlation functions are used to to extract the fraction of primordial

muons. The invariant mass signals for Kµ and pµ atoms are observed. The yields of

these atoms are measured with significances ranging from 1.9σ to 3.2σ. The measured

yields are found not in agreement with calculations based on a coalescence model.

This suggests significant other sources may be needed to account for the atom yields

in heavy-ion collisions. To improve the statistical uncertainties, centrally triggered

events, with higher muon multiplicities, are found to be more helpful than minimum

bias events. The largest contribution to systematic uncertainties is from the number

of TPC hit points. STAR has proposed an iTPC upgrade [68], in which the inner

sector of the TPC will be equipped with more channels. The iTPC will improve both

dE/dx and tracking performance, and thus can improve the systematic uncertainties.

With the recently installed MTD, we will be able to detect πµ atoms but possibly

not pµ or Kµ atoms, because the associated hadrons in pµ and Kµ in muonic atoms

have much higher momenta, and therefore detection at the STAR experiment will not

be favorable.
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