Study of Charge Symmetry Breaking in $\mathbf{A}=4$ hypernuclei in $\sqrt{s_{N N}}=3 \mathbf{G e V} \mathbf{A u}+\mathbf{A u}$ collisions at RHIC

Tianhao Shao (for the STAR Collaboration) ${ }^{1, *}$
${ }^{1}$ Key Laboratory of Nuclear Physics and Ion-beam Application (MOE),
Institute of Modern Physics, Fudan University, Shanghai 200433, China

(Dated: March 1, 2022)
The Λ binding energy difference, which is called the charge symmetry breaking in the ground states of a pair of $\mathrm{A}=4$ hypernuclei, ${ }_{\Lambda}^{4} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{He}$, was measured to be $\Delta B_{\Lambda}^{4}\left(0_{\text {g.s. }}^{+}\right) \approx 350 \mathrm{keV}$ in nuclear emulsion experiments in 1970s. In the 2015 experiment from J-PARC, the binding energy difference in excited states $\Delta B_{\Lambda}^{4}\left(1_{\text {exc }}^{+}\right) \approx 30 \mathrm{keV}$ was found to be much smaller than the ground states. In 2016, the A1 collaboration updated the values to $\Delta B_{\Lambda}^{4}\left(0_{g . s .}^{+}\right) \approx 233 \mathrm{keV}$ and $\Delta B_{\Lambda}^{4}\left(1_{\text {exc }}^{+}\right) \approx-83 \mathrm{keV}$. These values are difficult to be reproduced in existing theoretical models. The full understanding of the charge symmetry breaking in $\mathrm{A}=4$ hypernuclei still remains an open question.

As a part of the STAR fixed target program, the STAR detector took the data in Au+Au collisions at $\sqrt{s_{N N}}=3 \mathrm{GeV}$ in 2018. The high production yield of hypernuclei provides an opportunity to measure the binding energies of both $\mathrm{A}=4$ hypernuclei in ground states in the same experiment to address this charge symmetry breaking puzzle. In this talk, we will present the measurement of the charge symmetry breaking in $\mathrm{A}=4$ hypernuclei in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=3 \mathrm{GeV}$. The signal reconstruction and binding energy measurement of ${ }_{\Lambda}^{4} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{He}$, including corrections and systematic uncertainty evaluation, will be discussed. Combined with the energy levels of excited states, our preliminary result for the Λ binding energy difference in excited states shows a negative value and its magnitude is comparable to the value of ground states. These results will be compared to previous measurements and theoretical models. Future study with a factor of 7 more events from STAR taken in 2021 will also be discussed.

[^0]
[^0]: * thshao21@m.fudan.edu.cn

