

J/ ψ R_{AA} and v_2 via the di-muon channel in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR Experiment Takahito Todoroki (BNL) for the STAR Collaboration

Quarkonium Working Group 2016 PNNL, Richland, WA June 6th – 10th, 2016

Quark-Gluon Plasma

 QCD predicts a phase transition from confined hadrons to Quark-Gluon Plasma (QGP) where *partons are the relevant degrees of freedom*

Contemp. Phys. 42 (2001) 209, courtesy F. Karsch

• Form QGP with relativistic heavy ion collisions

Probe QGP with J/ψ

Color-screening: J/ψ dissociate in the medium

T=0

0<T<T_

 J/ψ suppression was proposed as a direct proof of deconfinement

T. Matsui and H. Satz PLB 178 (1986) 416

HOWEVER

- Various production mechanisms
 - Prompt: direct production; decay of $\psi(2S)$ and χ_c (40%)
 - Non-prompt: B-meson decay (Up to 20% at high p_T)

• Different effects in play

- Hot nuclear matter effects
 - Dissociation
 - Regeneration from uncorrelated quarks
 - Medium-induced energy loss
- Cold nuclear matter effects

The Solenoid Tracker At RHIC (STAR)

• Mid-rapidity detector: $|\eta| < 1, 0 < \phi < 2\pi$

Analysis details

- Decay channel: $J/\psi \rightarrow \mu^+ + \mu^-$
- **Dimuon trigger**: two hits in MTD
- Data set: Au+Au collisions at 200 GeV recorded in 2014
 - Integrated luminosity ~ 14.2 nb^{-1}
 - Only 30% is used for the results presented here
 - Equivalent amount of data have been taken in 2016 experiment!!

• Muon identification cuts

- Energy loss measurement by TPC
- Match TPC tracks to MTD
 - Distance between MTD hits and projected TPC tracks along both z and ϕ directions
 - Time difference between MTD measured time and expected travel time of muons

Extract J/ψ yield

Signal extraction

- Mixed-event \rightarrow combinatorial background.
- Fit background-subtracted unlike-sign with Gaussian+pol3
- Signal = (counting in [2.9,3.3] GeV/c²)-(residual background)

No bremsstrahlung tail S/B = 1:23 $N \sim 4000$ **Sig ~ 11.5σ**

3.6

3.8

M_{uu} (GeV/c²)

J/ψ yield in p_T bins

- Good significance in each p_T bin
- Larger J/ ψ p_T \rightarrow larger S/B, wider J/ ψ peak and fewer signal counts

Invariant yield of J/ψ

• First mid-rapidity measurement of J/ ψ yield in Au+Au collisions via the di-muon channel for $1 < p_T < 10$ GeV/c

Invariant yield of J/ψ

• Consistent with the published di-electron results using Run10 data over the entire kinematic range.

Di-electron:

J/ ψ suppression: $R_{AA} = \frac{\sigma_{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dy dp_T}{d^2 \sigma_{pp} / dy dp_T}$

• Confirm the rising R_{AA} with p_T seen in the dielectron channel

Closer look at the 0-20% central collisions

Compare with model calculations

• Both models include dissociation of the prompt J/ψ and contribution of regenerated $J/\psi \rightarrow$ qualitatively reproduce the rising trend seen in the data.

 $J/\psi R_{AA} vs N_{part}$

- Significant suppression for J/ψ above 4 GeV/c in 0-20% and 20-40% centralities → dissociation
- Both models qualitatively reproduce the centrality dependence

Collective Flow

 Anisotropies in momentum space originate from initialgeometry *via hydrodynamic expansion*

Charged hadron

۷_n (%)

² ³ ⁴ ⁵ ⁶ p_t (GeV/c) STAR, PRL.92.062301

Voloshin and Zhang, Z.Phys.C70, 665

- Elliptic flow (v₂) :
 - Low p_T : sensitive to medium viscosity
 - High p_T : sensitive to energy loss

Does J/ ψ flow?

- Measure elliptic flow v₂
 - Primordial J/ ψ : little or zero v₂
 - Regenerated J/ ψ : inherit v₂ from the constituent charm quarks

- For p_T above 2 GeV/c, v_2 is consistent with zero \rightarrow *contribution of regenerated J/\psi is small*
 - Non-flow effects estimated using J/ψ -h correlation in pp collision can account for possible deviation of v₂ from zero at high p_T

X. Zhao and R. Rapp, arXiv: 0806.1239

Y. Liu, N. Xu and P. Zhuang, NPA 834 (2010) 317 U.W. Heinz and C. Shen, (private communication)

Does J/ψ flow?

- Measure elliptic flow v₂
 - Primordial J/ ψ : little or zero v₂
 - Regenerated J/ ψ : inherit v₂ from the constituent charm quarks

- Consistent results from di-muon channel within large error bars
- 7 times more statistics are yet to come!!

Summary

- First J/ ψ measurements via di-muon channel at mid-rapidity by the STAR experiment in Au+Au collisions
- Invariant yield of J/ψ is obtained, and R_{AA} rises with p_T
 - Significant suppression in central collisions above 4 GeV/c \rightarrow dissociation
 - Measure J/ ψ in pA (Run15) to quantify CNM, especially at low p_T
- Updated $J/\psi v_2$ in di-electron channel combining Run10 and Run11 data \rightarrow favors small contribution from regeneration above 2 GeV/c
 - Results in di-muon channel with 7 times more statistics are yet to come and can shrink uncertainties!!

Backup

Compare $J/\psi v_2$

- By combining published results with Run11 analysis, the statistical error bar is reduced by a factor of $\sqrt{2}$.
- Additional systematic uncertainty is assigned due to J/ψ yield extraction.

Muon Telescope Detector (MTD)

• Relatively high efficiency for J/ψ at low $p_T \rightarrow$ cover wide kinematic range

- Separate Y(2S+3S) from Y(1S)
- Potential to separate Y(2S) and Y(3S) states as muons suffer less from bremsstrahlung

Y measurement

- Fit signal distribution after background subtraction:
 - Mean of Υ is fixed to PDG value, while width is determined from simulation.
 - Ratio of $\Upsilon(2S)/\Upsilon(3S)$ is fixed to pp value, and shape of bb and Drell-Yan background is estimated using PYTHIA

$\Upsilon(2S+3S)/\Upsilon(1S)$ ratio

PLB 735 (2014) 127 PRL 1029(2012) 222301

 Consistent with dielectron channel within large error bars

- The statistical error can be further reduced:
 - A factor of 7 more statistics with full Run14+16 data
 - Usage of mix-event can reduce statistical error by $\sqrt{2}$