

High- $p_T$  Spectra of Charged Hadron Production in Au+Au Collisions at  $\sqrt{s_{NN}} = 9.2$  GeV in STAR

> M.Tokarev for **STAR** Collaboration

> > JINR, Dubna

Outline:

- Motivation
- **STAR** Experiment and Collisions at  $\sqrt{s_{NN}} = 9.2 \text{ GeV}$
- Results and systematics : spectra, ratios, efficiency
- $\triangleright$  Results of analysis: energy loss vs. p<sub>T</sub>, centrality
- Summary and Outlook (RHIC Energy Scan)





## Motivation & Goal



**RHIC** has uncovered an exciting new state of matter The most important questions are not fully answered

- -- location of phase boundaries
- -- position of critical point (CP)
- -- signatures of phase transition (1<sup>st</sup>, 2<sup>nd</sup>)
- -- thermodynamic parameters near CP
  - T,  $\mu_B$ , heat capacity, energy density,...

An exploration of the full region of energy

 $s^{1/2} = 5-200$  GeV available at the RHIC

facility is an unavoidable imperative. To find the region where the "flagship" observables established at top RHIC energies will change or even disappear  $(v_2 \& CQS, R_{AA} \& R_{CP}$  suppression,...)

- To present  $p_T$  spectra of charged hadrons from data taking in STAR with the Au+Au collisions at  $\sqrt{s_{NN}} = 9.2 \text{ GeV}$
- $\triangleright$  To estimate constituent energy loss vs. centrality, energy collisions and  $p_T$
- > The Beam Energy Scan at RHIC as a Program to search for CP



## **STAR Experiment**

- Time Projection Chamber
  - Measures charged particle momenta and energy loss within  $|\eta| < 1.8$
  - Full azimuthal acceptance



Large uniform acceptance Excellent particle ID ( $\pi$ ,K,p,e)

#### STAR TPC Event Display





central collision

## The Solenoidal Traker At RHIC

**STAR** 



Large and uniform acceptance for all beam energies, excellent particle identification (TPC+ToF) are significant advance to carry out the BES program in the Critical Point search



### Charged multiplicity

Collision centrality



Data sample (2008)  $|z_{vrtx}| < 75 cm$  $\approx 4000 \text{ events}$ 

Tracks from TPC DCA < 3cm NFit>20  $|\eta| < 0.5$  $p_T > 0.2 \text{ GeV/c}$ 

| % cs     | $< N_{ch} >$ | N <sub>evnt</sub> |
|----------|--------------|-------------------|
| 0 - 10%  | 198.5        | 500               |
| 10 - 30% | 115.2        | 1070              |
| 30 - 60% | 39.6         | 1537              |
| min.bias | 69.6         | 4037              |

# **STAR** Charged hadron spectra in Au+Au & 9.2 GeV



#### STAR

B.Abelev, nucl-ex/0909.4131 J.Chen, nucl-ex/0910.0556

#### Spectra

Corrected on the efficiency of reconstructing particle tracks The similar shape of  $p_T$  distribution Decreases by more than 5 order of magnitude

$$<\!p_{T}\!>=\!\frac{1}{N_{hist}}\sum_{i=1}^{N_{hist}}\!p_{T}^{i}$$

| centrality | $< p_T >$ , MeV/c |
|------------|-------------------|
| 0 - 10%    | $413.5 \pm 0.5$   |
| 10 - 30%   | $409.8 \pm 0.4$   |
| 30 - 60%   | $399.8 \pm 0.5$   |
| minbias    | $408.7 \pm 0.3$   |

## Spectra ratio vs. p<sub>T</sub> & multiplicity



The ratio of multiplicity binned  $p_T$  spectra to multiplicityintegrated spectra scaled by mean multiplicity for each bin for charged hadrons is sensitive to centrality for high  $p_T$ .



R<sub>CP</sub> ratio vs. p<sub>T</sub>



The  $R_{CP}$  ratio increases with  $p_T$ .

## Constituent energy loss & z-scaling

STAR



# AuAu Beam Energy Scan Program at RHIC

**Experimental Study of the QCD Phase Diagram and Search for the Critical Point** 



#### Turn off of QGP Signatures and Other New Phenomena

- Constituent Quark Number Scaling
- > High & Intermediate p<sub>T</sub> Spectra:
- > QGP Opacity and the Baryon Anomaly
- > Pair Correlations in  $\Delta \phi \& \Delta \eta$
- Local P violation in Strong Interactions

#### **STAR** Run 10 Plan for First Energy Scan

| Beam   | μ <sub>B</sub> | Event | 8-hr Days/1M | Events   | 8-hr days |
|--------|----------------|-------|--------------|----------|-----------|
| Energy | (MeV)          | Rate  | Events       | proposed | proposed  |
| 5      | 550            | 0.8   | 45           | (100 k)  | 5         |
| 7.7    | 410            | 3     | 11           | 5M       | 56        |
| 11.5   | 300            | 10    | 3.7          | 5M       | 19        |
| 17.3   | 230            | 33    | 1.1          | 15M      | 16        |
| 27     | 150            | 92    | 0.4          | 33M      | 12        |
| 39     | 110            | 190   | 0.2          | 24M      | 5         |

#### Search for Phase Transition and Critical Point

- Elliptic and Directed Flow
- Azimuthally Sensitive HBT
- Fluctuations  $p/\pi$ ,  $K/\pi$ ,  $< p_T >$

#### **STAR** Collaboration

B.Abelev et al., Run 10 Beam Energy Scan at RHIC H.Crawford, AGS-RHIC Meeting, 2009

- L.Kumar, SQM08
- O.Barannikova, RSCM09, Dubna



- Spectra of charged hadrons produced in Au+Au collisions at 9.2 GeV and ratios of particle yields in middle rapidity at high p<sub>T</sub> are obtained by STAR.
- Sensitivity of the ratios R<sub>mult/mbais</sub> & R<sub>CP</sub> to centrality is enhanced with p<sub>T</sub>.
- Hadron yields can be an estimate of a constituent energy loss as a function of energy and centrality collision, transverse momentum of hadron in the z-scaling approach.
- ➤ Large and uniform acceptance and extended particle identification (TPC, ToF, EMC) of STAR is suitable to Critical Point search at low energy  $\sqrt{s}_{NN} = 5 39$  GeV.

## The STAR Collaboration

University of Illinois at Chicago - Achioved Na Birmingham Brookhaven National and the Berkeley - University of California - Sand Creighton University – Nu Cale - Indian Particle Physics - Laboratory – University Technology, Mumba – Indian Strasbourg - University National Laboratory -State University - Mos cow - Ingresous University - Ohio State University - Ohio State University Energy Physics - Purdue University - Post Instituto de Fisica da University - Subscription University - Valparaizo University University - Valparaizo University

Mark of High Energy Physics - University of Contraction of California, Angeles - Carnegie Mellon University -Carnegie Subatomiques de re of Marker Physics - Indian Institute of Carnegie Carnegie Mellon University -Carnegie Carnegie Mellon University of Carnegie Carnegie Carnegie Mellon University of Carnegie Car

Thank you for attention !



AuAu & 9.2 GeV



## Backup slides

## KR Kinematics of constituent sub-process in AA



M.T. & I.Zborovsky PRD75,094008(2007) IJMPA24,1(2009)

#### Momentum conservation law

$$(x_1P_1 + x_2P_2 - p/y_a)^2 = M_X^2$$
  
 $M_X = x_1M_1 + x_2M_2 + m_2/y_b$ 

## Principle of minimal resolution $\Omega^{-1}$ of the fractal measure z gives:

 $x_1, x_2 \rightarrow$  energy of the sub-process  $y_a \rightarrow$  energy loss (dissipation) by production of the inclusive particle

$$M_X = x_1 M_1 + x_2 M_2 + m_2 / y_b \rightarrow \text{recoil mass}$$

 $y_b \rightarrow$  multiplicity of the recoil system

- > The fractal dimensions  $\delta$ ,  $\varepsilon$  and "specific heat" c are parameters of the theory describing the structure of nuclei, fragmentation process and nuclear medium.
- > The parameters are sensitive to energy and centrality collision at high  $p_T$ .

STAR Charged hadron spectra in Au+Au & 9.2 GeV

#### z-presentation of spectra



The same shape Ψ(z) for all centralities & energies ε<sub>AuAu</sub> depends on a multiplicity density
Scenario of interaction: small "specific heat" & δ<sub>AuAu</sub>
Correlation of c<sub>AuAu</sub>, ε<sub>0</sub>, δ at high p<sub>T</sub>
Centrality dependence of the spectra constraints c<sub>AuAu</sub>
Different scenario in high-z range (p<sub>T</sub> > 4 GeV/c)

#### Beam Energy Scan Program at RHIC

could help to discriminate different scenario of constituent interactions and to search for CP.