

Inclusive Charged Hadron Measurements In p+Au Collisions At $\sqrt{s_{NN}} = 200$ GeV In STAR

STAR

Tong Liu (Yale University) for the STAR collaboration 2021 Fall Meeting of the Division of Nuclear Physics Oct 12, 2021

Hadron Yield In Small Systems

> Sensitive probe across p_T

- High $p_{\rm T}$: proxy for jets
- Intermediate $p_{\rm T}$: Cronin effect
- Low $p_{\rm T}$: possible radial flow effect

1.5

> Previous measurements

- Central bins show larger suppression than peripheral bins at low $p_{\rm T}$; $R_{d\rm Au}$ rises with $p_{\rm T}$
- Some tension between measurements, no definitive conclusion
- Only *d*+Au & tagged p/n+Au so far

10/12/21

HEN

В

Event Activity (EA) In Small Systems

- Concept of centrality is not trivial for small systems
- ➤Asymmetric small system: correlation between (N_{coll}) and collision geometry significantly smeared compared to A+A collisions
- ≻EA: degree of violence of the collision
- EA indicator: experimental observable that best correlates with EA
- Mid-rapidity multiplicity: autocorrelation for spectrum measurement
- ≻Underlying multiplicity *UE*_{mult}

Code from: C. Loizides, Phys. Rev. C 94 (2016) 024914

STAR

10/12/21

The STAR Detector

>Time Projection Chamber (TPC)

- Methane-argon gas mixture
- Momentum reconstruction for charged tracks
- $|\eta| < 1$, full azimuthal coverage

≻Time Of Flight (TOF)

- MRPC technology providing PID info
- TOF-matching used for pileup rejection
- $|\eta| < 1$, full azimuthal coverage
- Zero Degree Calorimeter (ZDC, out of view)
 - Used for triggering & luminosity monitoring

≻Data: 2015 *p*+Au @ 200 GeV

>Particle selection:

- Charged particles reconstructed by TPC
- TOF-matched to reject pileup
- $0.2 < p_{\rm T} < 30 \; {\rm GeV}/c, \, |\eta| < 1$

Underlying Multiplicity As EA

Divide TPC acceptance into different regions

- Count track multiplicity in regions transverse to a random trigger angle as EA indicator:UE^{rand}_{mult}
 - N_{ev}^{rand} : # of events in each UE_{mult}^{rand} bin

> Tracks in trigger & recoil region: dN_{ch}^{trig}/dp_{T}

10/12/21

Underlying Multiplicity As EA

Divide TPC acceptance into different regions

Count track multiplicity in regions transverse to a random trigger angle as EA indicator:UE^{rand}_{mult}

• N_{ev}^{rand} : # of events in each UE_{mult}^{rand} bin

> Tracks in trigger & recoil region: dN_{ch}^{trig}/dp_{T}

≻Glauber MC^[1] ⊗ negative binomial distribution to fit UE_{mult}^{rand} at high end

>Divide (fitted curve) into deciles & get $\langle N_{coll} \rangle$ for each UE_{mult}^{rand} bin

Low end of multiplicity: mismatch due to event trigger inefficiency

C. Loizides, Phys. Rev. C 94 (2016) 024914 2021 Fall Meeting of the APS Division of Nuclear Physics

Underlying Multiplicity As EA

High-to-low EA Spectrum Ratio

- Corrected for detector effects (see backup)
- High-to-low EA ratio: systematic uncertainties partially cancel
- ► Per-event yield for $UE_{mult}^{rand} \ge 6$ divided by that for $UE_{mult}^{rand} \ge 2$
- Ratio ~ 1 @ low p_T, rise up at intermediate p_T and plateau above 3.5 GeV/c
- Slightly different observable than previous measurements
- >Ideally: ratio to p+p collisions

Summary

- First inclusive charged hadron EA-dependent ratio measurement for $0.2 < p_T < 8 \text{ GeV}/c$ charged hadrons in 200 GeV *p*+Au collisions at STAR
- Yield ratio between high and low-EA events: consistent with unity at low p_T and show hints of enhancement at intermediate & high p_T

Outlook

- Study different systematic effects and calculate absolute invariant yields
- Compare to STAR p+p yield and calculate R_{pAu}
- Extend the measurement to charged & full jets

Thank you!

Tong Liu

- Pileup: tracks from different physical collisions recorded in the same event
 - Use TOF-matching to reject pileup
- Event trigger efficiency: low-EA events might not be able to fire the trigger
 - Reweight events by Glauber-fitting ratio
- Vertex & luminosity correction: Average multiplicity has artificial dependence
 - Assign weight factor from polynomial fitting
- Track momentum resolution & tracking efficiency: tracks reconstructed with wrong p_T or completely missed
 - Use embedding data to correct for detector effects

10/12/21

- Pileup: tracks from different physical collisions recorded in the same event
 - Use TOF-matching to reject pileup
- Event trigger efficiency: low-EA events might not be able to fire the trigger
 - Reweight events by Glauber-fitting ratio
- Vertex & luminosity correction: Average multiplicity has artificial dependence
 - Assign weight factor from polynomial fitting
- Track momentum resolution & tracking efficiency: tracks reconstructed with wrong p_T or completely missed
 - Use embedding data to correct for detector effects

- Pileup: tracks from different physical collisions recorded in the same event
 - Use TOF-matching to reject pileup
- Event trigger efficiency: low-EA events might not be able to fire the trigger
 - Reweight events by Glauber-fitting ratio
- Vertex & luminosity correction: Average multiplicity has artificial dependence
 - Assign weight factor from polynomial fitting
- Track momentum resolution & tracking efficiency: tracks reconstructed with wrong p_T or completely missed
 - Use embedding data to correct for detector effects

- Pileup: tracks from different physical collisions recorded in the same event
 - Use TOF-matching to reject pileup
- Event trigger efficiency: low-EA events might not be able to fire the trigger
 - Reweight events by Glauber-fitting ratio
- Vertex & luminosity correction: Average multiplicity has artificial dependence
 - Assign weight factor from polynomial fitting
- > Track momentum resolution & tracking efficiency: tracks reconstructed with wrong $p_{\rm T}$ or completely missed
 - Use embedding data to correct for detector effects

10/12/2

SIAR

Systematic Uncertainties

- Pink band (along the curve): TOF matching uncertainty
 - TOF-matching is always required for EA-indicator tracks
 - Nominal spectrum uses TOF-matched tracks to get rid of pileup
 - Variation 1: alternative pileup elimination method low ZDCx events (0-8000 HZ), don't require TOF-matching for tracks
 - Variation 2: Closest to "Ideal" case: low ZDCx + TOF matching
 - Currently quoting the bigger difference to nominal spectrum as uncertainty
- Gray box on the right: Glauber uncertainty
 - Nominal: σ_{NN} =42 mb, R(Au)=6.38 fm, d=0.535 fm (skin depth), Hard-core collision profile
 - Variation 1: R+= 2%, d-=10%, or R-= 2%, d+=10%
 - Variation 2: σ_{NN} +/- = 1 mb
 - Uncertainty: for each variation, quote the bigger difference to nominal spectrum; then add in quadrature
 - Assuming uncertainty uncorrelated in different bins (adding in quadrature)

10/12/21