System size dependence of particle production and collectivity from the STAR experiment at RHIC

Tong Liu (Yale University)
for the STAR collaboration
Quark Matter 2022, Krakow, Poland (hybrid)
RHIC has provided us with a variety of collision systems.

For different collision systems, same N_{part} leads to different initial geometry.

What are the decisive factors of medium properties?

Not an exhaustive list of all collision species at RHIC!
System Size Dependence of Medium Properties

\[\langle N_{\text{part}} \rangle \]

\begin{align*}
&10^{0.5} & 10^1 & 10^{1.5} & 10^2 & 10^{2.5} \\
&197_{79}^{\text{Au}} + 197_{79}^{\text{Au}} & & & & \\
&96_{44}^{\text{Ru}} + 96_{44}^{\text{Ru}}/\text{96}_{40}^{\text{Zr}} + 96_{40}^{\text{Zr}} & 60-80\% & & & 10-20\% & 0-5\% \\
&64_{29}^{\text{Cu}} + 64_{29}^{\text{Cu}} & 40-60\% & 20-40\% & 0-10\% & \\
&d + 197_{79}^{\text{Au}} & 0-100\% & & & 0-20\% \\
&\gamma + 197_{79}^{\text{Au}} & & & & & \\
\end{align*}

- Nuclear modification of hard partons
- Momentum distribution of identified hadrons
- Collective motion
- Long-range correlation of inclusive hadrons
The STAR Detector
System Size Dependence of Medium Properties

Nuclear modification of hard partons
Ru+Ru & Zr+Zr show similar level of suppression

Significant high-p_T suppression for central events

Suppression decreases with centrality
- 40-60% looks similar to 60-80%

$$R_{AA} = \frac{1}{N_{ev}} \frac{d^2N_{AA}}{d\eta dp_T} \frac{T_{AA} d^2\sigma_{NN}^{NN}}{d\eta dp_T}, T_{AA} = \langle N_{coll} \rangle / \sigma_{inel}^{NN}$$
R_{AA} as a Function of N_{part}

\begin{align*}
\text{Data} & \\
\text{Ru+Ru} & \\
\text{Zr+Zr} & \\
\text{pp uncertainty} & \\
\end{align*}

\begin{align*}
\text{STAR Preliminary} & \\
\text{Isobar} & \sqrt{s_{\text{NN}}}=200 \text{ GeV} \\
(\hbar^+ + \hbar^-)/2 & p_{\text{T}} > 5.1 \text{ GeV/c} \\
\end{align*}

Tong Liu
R_{AA} as a Function of N_{part}

R_{AA} in 0-60% central events ($\langle N_{part}\rangle > 20$) decrease with $\langle N_{part}\rangle$.

STAR Preliminary

Isobar $\sqrt{s_{NN}}=200$ GeV
$(h^+ + h^-)/2$, $p_T > 5.1$ GeV/c

Data
- Ru+Ru
- Zr+Zr
- pp uncertainty
R_{AA} as a Function of N_{part}

- R_{AA} in 0-60% central events ($\langle N_{\text{part}} \rangle > 20$) decrease with $\langle N_{\text{part}} \rangle$
- Same R_{AA} at same $\langle N_{\text{part}} \rangle$ regardless of system

STAR Preliminary
Isobar $\sqrt{s_{NN}}=200$ GeV
$(h^+ + h^-)/2$ $p_\pi > 5.1$ GeV/c
R_{AA} as a Function of N_{part}

- R_{AA} in 0-60% central events ($\langle N_{part} \rangle > 20$) decrease with $\langle N_{part} \rangle$
- Same R_{AA} at same $\langle N_{part} \rangle$ regardless of system
- Deviation from trend starting at $\langle N_{part} \rangle \lesssim 20$

STAR Preliminary
Isobar $\sqrt{s_{NN}}=200$ GeV
$(h^+ + h^-)/2 \ p_{\text{T}} > 5.1$ GeV/c

Tong Liu
R_{AA} as a Function of N_{part}

- R_{AA} in 0-60% central events ($\langle N_{part} \rangle > 20$) decrease with $\langle N_{part} \rangle$
- Same R_{AA} at same $\langle N_{part} \rangle$ regardless of system
- Deviation from trend starting at $\langle N_{part} \rangle \approx 20$
 - Event selection bias in peripheral events causes artificial suppression?
 - HG-PYTHIA\(^1\) qualitatively gets trend but predicts steeper drop
 - Detailed studies ongoing

\[R_{AA} = \frac{dN_{AA} - dN_{pp}}{dN_{pp}} \]

\[\langle N_{part} \rangle \]

\[\sqrt{s_{NN}} = 200 \text{ GeV} \]

\[(h^+ + h^-)/2 \quad p_\perp > 5.1 \text{ GeV}/c \]

Ru+Ru/Zr+Zr Yield Ratio

- For the same centrality percentage, Ru+Ru collisions have bigger N_{coll}
- Ru+Ru/Zr+Zr per-event yield ratio > 1
 - strong resolution on system size difference
- N_{coll}-scaled ratio consistent with unity at high p_T
 - No significant difference on quenching
- N_{part}-scaled ratio beyond 1 at $p_T > 0.5$ GeV/c
 - Consistent with unity at the lowest p_T
 - Rising with p_T: flow effect?

Refer to: Talk by Haojie Xu (Wed 9:00 AM T01) & Poster by Chunjian Zhang (Session 2 T14-2 #962)
System Size Dependence of Medium Properties

\[\langle N_{\text{part}} \rangle \]

\begin{align*}
&10^{0.5} & 10^1 & 10^{1.5} & 10^2 & 10^{2.5} \\
\text{197}_7^{79}\text{Au} + \text{197}_7^{79}\text{Au} & & & & & \\
&60-80\% & 30-40\% & 10-20\% & 0-5\% \\
\text{96}_4^{44}\text{Ru} + \text{96}_4^{44}\text{Ru} / \text{96}_4^{40}\text{Zr} + \text{96}_4^{40}\text{Zr} & & & & & \\
&60-80\% & 40-60\% & 20-40\% & 0-10\% \\
\text{64}_2^{29}\text{Cu} + \text{64}_2^{29}\text{Cu} & & & & & \\
&40-60\% & 20-40\% & 10-20\% & 0-10\% \\
\text{d} + \text{197}_7^{79}\text{Au} & & & & & \\
&0-100\% & 0-20\% \\
\gamma + \text{197}_7^{79}\text{Au} & & & & & \\
& & & & & \\
\end{align*}

Momentum distribution of identified hadrons
Identified Hadron Momentum Distribution in Isobar Collisions

STAR Preliminary
Isobar $\sqrt{s_{NN}}=200$ GeV

$-0.5 < y < 0.5$
statistical uncertainty only

Ru+Ru/Zr+Zr ratio of different particle species show similar dependence on centrality

Possible difference in flow between Isobar collisions

Poster by
Yang Li
(Session 3 T16 #345)
STAR Preliminary
Isobar $\sqrt{s_{NN}}=200$ GeV
-0.5 < y < 0.5
statistical uncertainty only

Pion and proton charge ratios show extra positive particles in Ru+Ru collisions
- Kaon ratio less conclusive
- Extra protons in $^{96}_{44}\text{Ru}$ nucleus
Difference Between Baryons and Mesons

STAR Preliminary
Isobar $\sqrt{s_{NN}}=200$ GeV
$-0.5 < y < 0.5$
statistical uncertainty only

$\frac{dN}{dp_T}$ (Zr+Zr) / $\frac{dN}{dp_T}$ (Ru+Ru)

10-20%

20-40%

$-$0.5 < y < 0.5

- Ratios increase more rapidly with increasing particle mass
- Different centralities show similar trends

Poster by Yang Li
(Session 3 T16 #345)
System Size Dependence of Medium Properties

\[\langle N_{\text{part}} \rangle \]

\[
\begin{array}{cccc}
10^{0.5} & 10^1 & 10^{1.5} & 10^2 & 10^{2.5} \\
\end{array}
\]

- \(^{197}_{79}\text{Au} + ^{197}_{79}\text{Au} \)
- \(^{96}_{44}\text{Ru} + ^{96}_{44}\text{Ru} \)
- \(^{96}_{40}\text{Zr} + ^{96}_{40}\text{Zr} \)
- \(^{64}_{29}\text{Cu} + ^{64}_{29}\text{Cu} \)
- \(d + ^{197}_{79}\text{Au} \)
- \(\gamma + ^{197}_{79}\text{Au} \)

Collective motion
Collectivity in Small & Medium Systems

- Sizable v_2 & v_3 in isobar systems
- Different v_n for different methods
 - Same ratio for a fixed centrality bin
- Collectivity also seen in $p/d+Au$ systems
- What does collectivity look like in even smaller system?
System Size Dependence of Medium Properties

Long-range correlation of inclusive hadrons

- $^{197}_{79}\text{Au} + ^{197}_{79}\text{Au}$
- $^{96}_{44}\text{Ru} + ^{96}_{44}\text{Ru}$, $^{96}_{40}\text{Zr} + ^{96}_{40}\text{Zr}$
- $^{64}_{29}\text{Cu} + ^{64}_{29}\text{Cu}$
- $d + ^{197}_{79}\text{Au}$
- $\gamma + ^{197}_{79}\text{Au}$

(size) $\langle N_{\text{part}} \rangle$

$10^{0.5}$ 10^1 $10^{1.5}$ 10^2 $10^{2.5}$

- 0-10%
- 10-20%
- 20-40%
- 30-40%
- 60-80%

- 0-20%
- 0-5%
- 0-10%
- 10-20%
- 20-40%
- 30-40%
- 60-80%

Tong Liu
Tagging Photonuclear Events in Heavy-Ion Collisions

- Photo-nuclear collision: proxy for low-Q^2 DIS
- Experimental access: tagged heavy-ion events
- Take advantage of asymmetric nature in tagging
 - Forward particle production on nucleus-going side & absence on photon-going side
 - See backup slide for more details on tagging γ+Au events

Inclusive UPC at RHIC

$E_{Au} = 27$ GeV

$E_{\gamma} \sim 0.8$ GeV

STAR Detector State & coverage (η)

- ZDCE (1n)
- VPDE, BBCE, EPDE (Gap)
- TPC, iTPC (Activity)
- FTS, FCS, VPDW, BBCW, EPDW (Activity)
- ZDCW (X_n)
Collectivity in Photonicuclear Events?

- Di-hadron correlation: probe collectivity of system

\[Y(\Delta\phi, |\Delta\eta| > 1) = \frac{2\pi}{N_{\text{trig}} N_{\text{assoc}}} \frac{dN_{\text{pair}}}{d\Delta\phi} \]

= 1 + \sum_n 2\nu_n \cos(n\Delta\phi)

- No near-side ridge within uncertainty: **No clear sign of collectivity**

- Higher activity γ+Au events under exploration

- Improved measurements with forward upgrade in 2023-25 with 200 GeV Au+Au collisions

STAR Preliminary

Au+Au $\sqrt{s_{NN}}$ = 54 GeV, 1nXn (γ+Au-rich)

h$^\pm$ ($|\eta|<1$, $|\Delta\eta|>1$, $0.2 < p_T^{\text{trig,asco}} < 2$ GeV/c

Activity: $1 \leq N_{\text{trk}}^{\text{TOF-match}} < 8$

- Data

- Fit
Conclusions

- Medium suppression of high-p_T hadrons mainly determined by $\langle N_{part} \rangle$
- Selection bias observed in peripheral events
- Ru+Ru/Zr+Zr particle yield ratios show species dependence
- Charge ratio shows hint on isospin effect
- No significant collectivity in photonuclear collisions observed

Outlook

- Detailed study of selection bias in high-p_T particle yield
- More differential study on dependence of quenching: volume, path-length, etc.
- Detailed study of identified particle spectrum & ratio as a function of rapidity & centrality
- STAR forward upgrade: opportunities for $\gamma + A$ system
Thank you!
Dziękuję Ci!
Backup
STAR Isobar Collisions

- **Zr+Zr/Ru+Ru collision system**
 - System size between large (Au+Au) and small (p/d+Au) system

- **Run 18 Zr+Zr/Ru+Ru Collisions**
 - Fine change in nuclear structure & system size: impact of difference in overlapping geometry
 - Large statistics: 2B Zr+Zr & 1.8B Ru+Ru Minimum-biased Events
 - Highly controlled for detector uniformity across runs & luminosity condition
 - Minimized systematics

Photo Credit: https://en.wikipedia.org/wiki/Nucleon
Hadron Yield at High Momentum & Medium Modification

- Hard partons lose energy to QGP: Jet Quenching
- High p_T hadrons: proxy to hard partons
- Glauber model:
 - $\langle N_{\text{part}} \rangle$ scaling for lower- p_T
 - $\langle N_{\text{coll}} \rangle$ scaling for high- p_T
- Nuclear Modification factor R_{AA}: comparison to p+p collisions
- Combine with existing U+U, Au+Au, Cu+Cu & d+Au data
 - Continuous evolution with system size

STAR, Phys. Rev. Lett. 91, 172302
ALICE show different selection biases on different centrality definitions

CMS observed suppression in peripheral events for Z-boson yield

R_{AA} with PHENIX results

Different nuclear density function lead to different multiplicity in same centrality

Difference in proton numbers also create net charge difference

Refer to: Talk by Haojie Xu (Wed 9:00 AM T01) & Poster by Chunjian Zhang (Session 2 T14-2 #962)
Selection of Photonuclear Events

- $\gamma+$ Au rich event selection:
 - Multiplicity: $1 < N_{trk}^{TOF-Match} \leq 8$
 - VPD: $|\nu_z^{VPD} - \nu_z^{TPC}| > 10$ cm, mismatch with TPC
 - ZDC: ln (γ-going) & Xn (nucleus-going)
 - BBC(γ-going)<200 & BBC(nucleus-going)>400

Tong Liu