

Measurement of transverse polarization for $\Lambda/\overline{\Lambda}$ in p+p collisions at STAR

Part I: Transverse spin transfer in polarized p+p collisions

Part II: Transverse polarization in unpolarized p+p collisions

Taoya Gao(高涛亚), Shandong University for the STAR collaboration

DIS2022, Santiago de Compostela, 2-6 May, 2022

Outline

- Motivation
- Introduction of RHIC and STAR
- Measurement of transverse spin transfer D_{TT}
- Measurement of polarizing Fragmentation Function (pFF)
- Summary

Motivation

- D_{TT} provides connections to the transversity distributions and transversely polarized fragmentation functions.
- A polarization, P_{Λ} , can be determined through the angular distribution of its weak decay product:

 $\frac{dN}{d\cos\theta^*} \propto (1 + \alpha P\cos\theta^*) \qquad \alpha: \text{ decay parameter}$

 $\Lambda \rightarrow p + \pi^-(BR = 64\%)$ π^-

Motivation

- Large transverse polarization of hyperon was first observed in unpolarized hadron-hadron collisions in 1970s.
 - Along the normal vector of production plane
 - Not fully understood

TMD FF

Quark polarization

quark's fragmentation

A.D. Panagiotou, Int.J.Mod.Phys.A 5, 1197,(1990)

One possible contribution could be from polarizing FFs

Precious results about polarizing FF

BELLE, PRL 122(2019) 042001

• Measurements at LEP ($\sqrt{s} = 90 \ GeV$) reported zero polarization \rightarrow scale effect?

ALEPH, PLB 374, 319 (1996);

(GeV/a) P_T^{Λ} (%) < 0.3 $-1.8 \pm 3.1 \pm 1.0$ 0.3 - 0.6 $0.4 \pm 1.8 \pm 0.7$ 0.6 - 0.9 $1.0 \pm 1.9 \pm 0.7$ 0.9 - 1.21.2 - 1.5 $0.0 \pm 2.7 \pm 0.6$ > 1.5 $1.8 \pm 1.6 \pm 0.5$ > 0.3 $0.9 \pm 0.9 \pm 0.3$ > 0.6 $1.1 \pm 1.0 \pm 0.4$

OPAL, EPJC 2, 49 (1998)

- $p + p \to \Lambda^{\uparrow} + X$
- In pp collisions, transverse polarization of Λ in jet can access polarizing FF
- Test the scale dependence

What can we do at RHIC

Relativistic Heavy Ion Collider

• RHIC can provide all 4 collision patterns: ++, --, +-, -+.

- RHIC: world's first (and only) polarized hadron collider.
- For p+p, RHIC can run at $\sqrt{s} = 200 \text{ GeV}$ and 500/510 GeV with beams longitudinally or transversely polarized
- Data set for D_{TT} :
 - transversely polarized collisions
 - energy: 200 GeV
 - luminosity: 52 pb⁻¹
- Data set for pFF:
 - unpolarized beam collision
 - energy: 200 GeV
 - luminosity: 104 pb⁻¹

Solenoidal Tracker At RHIC

- For D_{TT} and pFFs analyses, the following sub-detectors are used:
 - **TPC:** the main detector for tracking and PID.
 - ✓ covering $|\eta| < 1.3$ and $\phi \in [0,2\pi]$.
 - TOF: used to improve PID.
 - ✓ covering $|\eta| < 1.0$ and $\phi \in [0,2\pi]$.
 - **EMC** includes:
 - ✓ BEMC (Barrel EMC) : covering $|\eta| < 1.0$ and $\phi \in [0,2\pi]$.
 - ✓ EEMC (Endcap EMC): covering 1.086 < η < 2.00 and $\phi \in [0,2\pi]$.
- Hard scattering events were selected by jet trigger based on energy deposits in EMC.

Transverse spin transfer D_{TT} extraction at STAR

- In hard partonic scattering, the direction of transverse polarization is rotated along the normal direction of the scattering plane.
- Jet axis is used to obtain the polarization direction after rotation.
 - The anti- $k_{\rm T}$ algorithm with R = 0.6 to reconstruct jets.
 - $\Delta R < 0.6$ is used to correlate $\Lambda(\overline{\Lambda})$ candidate with a jet.

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}; \ \Delta \phi = \phi_{\Lambda} - \phi_{jet}; \ \Delta \eta = \eta_{\Lambda} - \eta_{jet}$$

J.Collins, S.Heppelmann, G.Ladinsky, NPB420 (1994)565

STAR

Cross-ratio method for $\boldsymbol{D}_{\mathrm{TT}}$

• D_{TT} is extracted from a cross-ratio asymmetry using Λ counts with opposite beam polarization configurations within a small interval of $cos\theta^*$:

 $D_{TT} = \frac{1}{\alpha P_{beam} \langle cos\theta^* \rangle} \frac{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} - \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} + \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}$ STAR, PRD 98, 091103R (2018)

- N^{↑/↓}: number of Λ hyperon when the beam polarization is ↑/↓
- *α*: decay parameter
- *P*_{beam} : beam polarization
- The relative luminosity and the detector acceptance are both canceled.
- K_S^0 was used to do a null check
 - α of K_S^0 is assumed equal to 1

STAR, PRD98, 091103R (2018)

(10)

$\Lambda/\overline{\Lambda}$ reconstruction and background subtraction

• Reconstruction of the Λ and $\overline{\Lambda}$ candidates with TPC tracks:

 $\Lambda \rightarrow p + \pi^{-}; \overline{\Lambda} \rightarrow \overline{p} + \pi^{+}$

- ✓ Topological cuts to reduce the background.
- ✓ Side-band method to estimate the background fraction
- The spin transfer signal is extracted by:

$$D_{TT} = \frac{D_{TT}^{raw} - rD_{TT}^{bkg}}{1 - r}$$

r is the background fraction, <10%

$D_{TT}\ \mbox{vs}\ p_T\ \mbox{results}$ from STAR 2015 data

- D_{TT} is consistent with the model predictions, also consistent with zero within uncertainties
- D_{TT} results from 2015 are consistent with previous 2012 data, with twice the statistics.

$D_{TT}\xspace$ vs $z\xspace$ results from STAR 2015 data

$$\mathbf{z} = rac{p_A \cdot p_{jet}}{|p_{jet}|^2}$$

- First measurement of D_{TT} vs. z for $\Lambda(\overline{\Lambda})$ in p+p collisions.
- Results are consistent with zero within uncertainties.
- May indicate that the strange quark transversity distribution and/or the polarized fragmentation function of Λ(Λ) is small.

Transverse A polarization w.r.t. jet in unpolarized pp

- To determine the Λ polarization along the normal of jet- Λ plane, both Λ and jet reconstruction are needed.
- The detector acceptance & efficiency is required to extract the polarization, which can only be obtained via MC simulation.

 $\frac{dN}{d\cos\theta^*} = A(\cos\theta^*)(1 + \alpha P\cos\theta^*)$ $\vec{S} = \vec{p}_{jet} \times \vec{p}_{\Lambda}$

Embedding MC simulation

- Generator: Pythia 6.4.28
- Full Geant3 simulation of detector response
- Pythia events were embedded into STAR "zero bias" events
- Same analysis algorithm as data applied for MC sample

Λ polarization extraction

Precision projection of Λ **polarization**

• Projected precision of Λ polarization measurement in pp collisions :

• The analysis is ongoing

Summary

- The transverse spin transfer, D_{TT} , has been measured for $\Lambda(\overline{\Lambda})$ in p+p collisions at $\sqrt{s} = 200$ GeV at STAR:
 - Preliminary results of D_{TT} for $\Lambda(\overline{\Lambda})$ versus hyperon p_T up to 8GeV/c, with improved precision, are consistent with zero within uncertainties.
 - The first measurement of D_{TT} versus z, can provide direct information on the transversely polarized fragmentation functions.
- Polarizing fragmentation function, pFF, may contribute to the transverse polarization of $\Lambda(\overline{\Lambda})$ in unpolarized hadron collisions:
 - pFF is being studied in p+p collisions, by measuring $\Lambda(\overline{\Lambda})$ polarization within jets, which covers different momentum scales as BELLE and LEP.
 - pFF measurement at STAR is underway, 1~2% statistical precision is expected.

Back Up

Λ in jet and z determination

• *z* definition:

$$z = \frac{p_A \cdot p_{jet}}{|p_{jet}|^2}$$

 detector z: Jets are reconstructed using TPC tracks and EMC energy deposits

 particle z: In theoretical calculations, all the particles are used for the jet

• Measuring D_{TT} vs. particle z

- ✓ Obtain the detector z and D_{TT} in each detector z bin
- Correct the average detector z to particle z (using correction factors obtained from MC simulation based on Pythia6 + Geant)

