

James L. Drachenberg Valparaiso University for the STAR Collaboration

RHIC-AGS Users' Meeting June 25, 2013

OUTLINE

- Introduction
- \bullet Inclusive hadrons at forward η
- Jets and di-hadrons at central η
- Future measurements
- Summary

Contributions to Proton Spin Structure

Access to Orbital Motion and Transversity?

Inclusive hadrons:

Observed transverse single-spin asymmetries could arise from the **Sivers effect** or **Collins effect**, or from a **linear combination of the two**

Sivers or Collins $\sim sin(\phi_s)$

 $\varphi_{\text{S}}\text{--angle}$ between spin and event plane

Access to Orbital Motion and Transversity?

Separate Sivers and Collins:

Go beyond inclusive production - *e.g. Jets, correlations, direct photons*Sivers ~ $sin(\phi_s)$ Collins ~ $sin(\phi_s - \phi_h)$

 ϕ_s —angle between spin and event plane

 $\varphi_h\text{--angle}$ of hadron around jet axis

STAR as a Detector for Transverse Spin Effects

Transverse Single-spin Asymmetries

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

 $d\sigma^{\uparrow(\downarrow)}$ – cross section for leftward scattering when beam polarization is spin-up(down)

Positive A_N – more π^0 to *left* of (up) polarized beam

Two options to measure A_N **Single-arm:** $A_N = \frac{1}{P} \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}} \quad R = \frac{L^{\uparrow}}{L^{\downarrow}}$

R = relative luminosity P = beam polarization normal to π^0

Left-right symmetric detector → Cross-ratio Method:

$$A_{N} = \frac{1}{P} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}} - \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}} + \sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}$$

- Less sensitive to instrumental effects
- Factor out relative luminosity

STAR has measured sizeable transverse single-spin asymmetries for forward π^0 and η production At high- x_F , η asymmetry may be larger than that of π^0

Above results mostly from Run-6 (6.8 pb⁻¹ at 55% polarization)

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

 "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

- "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"
- "The Sivers effect alone might in principle be able to explain...almost the full amount of STAR π^0 data on A_N "

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

- "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"
- "The Sivers effect alone might in principle be able to explain...almost the full amount of STAR π^0 data on A_N "

Theoretical questions remain about applicability to *p*+*p* data of Sivers extractions from SIDIS (e.g. Kang et al., PRD 83, 094001 (2011))

Despite expectation of $1/p_T$ scaling, STAR data from Run-3 to Run-8 show **no sign of** $1/p_T$ fall-off out to $p_T \sim 5$ GeV/c

(consistent across multiple x_{F} -bins)

Recent models based on SIDIS fits suggest flat p_T -dependence for Sivers effect out to $p_T \sim 7$ GeV/c but at *lower magnitude than data*

Similar behavior for **Collins effect** in some parameterizations → possible hint of Collins+Sivers effect?

Twist-3 models also see flat p_T dependence out to $p_T \sim 15$ GeV/c [e.g. Kanazawa and Koike, PRD 83, 114024 (2011)]

A_N: The Kinematic Picture

Map A_N as a function of x_F and p_T EEMC provides access to lower x_F and higher p_T \rightarrow Expect small A_N at small x_F

Inclusive Neutral Pions at Intermediate Pseudorapidity

Mapping kinematic topology may help elucidate underlying mechanisms

Intermediate pseudorapidity (1 $\lesssim\eta\lesssim$ 2) maps a lower range of x_F for higher p_T than previously measured

Results shown for Run-6 (2.8 pb⁻¹ at 56% polarization) Higher statistics available with recent datasets

Forward Inclusive Neutral Pions at 200 GeV

Recent data from Run-12 suggest that asymmetries for pions with additional near-side energy deposit have *lower asymmetries than those of more isolated pions*

Forward Inclusive Neutral Pions at 200 GeV

Recent data from Run-12 further suggest that asymmetries for pions with additional near-side pion have

lower asymmetries than those with away-side or mid-range pion → *In both Vs = 200 and 500 GeV isolated pions show higher asymmetry than jet-like pions*

Forward neutral-energy jet analysis of Run-11 ongoing (M. Mondal, GHP2013)

Opportunities with Jet Measurements

Maximized Contributions (200 GeV)

Run-11 provides first look at transverse-spin inclusive jets at central pseudorapidity range with Vs = 500 GeV

Collins asymmetries expected to be small at $\sqrt{s} = 500 \text{ GeV}$

Higher gluon participation at Vs = 500 GeV allows unique sensitivity to gluon Collins-like asymmetry

Sign of non-zero signal for di-hadron transverse single-spin asymmetries in Run-6 data → Constrain transversity at higher x?

Run-12+15: opportunity for much higher precision

Measurements for Future Datasets

- Single Transverse Spin Asymmetry in Polarized Proton-Proton Collisions
 - Reduce statistical uncertainty by 1.4 over Run-12 of for Collins analysis
 - Increased precision for IFF's with addition of π^{\pm} - π^{0} measurement
 - Utilize forward upgrade for direct-photon Sivers measurement
- Single Transverse Spin Asymmetry in Polarized Proton-Nucleus Collisions
 - How does parton saturation enlighten our understanding of TMD's?
 - Can A_N get us to Weizsäcker-Williams gluon distribution?
 - What can direct-photon from pA teach us?
 - Studies of generalized parton distributions, e.g., exclusive J/ ψ in ultraperipheral collisions

See Session I Talk by L. Eun for more details

• Transverse spin physics: another path to understand proton spin structure

- Transverse spin physics: another path to understand proton spin structure
- STAR investigation of large transverse asymmetries at forward- η :
 - Persistence of sizable asymmetries at forward pseudorapidity to $p_T \sim 10$ GeV/c
 - Precise investigation of A_N dependence of on event topology

 \rightarrow asymmetries in jet-like π^0 are smaller than asymmetries in isolated π^0

- Investigation of forward calorimeter jets at Vs = 500 GeV underway
- Measurement of $\pi^0 A_N$ for the first time at intermediate pseudorapidity (1 < η < 2)

- Transverse spin physics: another path to understand proton spin structure
- STAR investigation of large transverse asymmetries at forward- η :
 - Persistence of sizable asymmetries at forward pseudorapidity to $p_T \sim 10$ GeV/c
 - Precise investigation of A_N dependence of on event topology

ightarrow asymmetries in jet-like π^0 are smaller than asymmetries in isolated π^0

- Investigation of forward calorimeter jets at Vs = 500 GeV underway
- Measurement of $\pi^0 A_N$ for the first time at intermediate pseudorapidity (1 < η < 2)
- STAR investigation of transverse spin effects at central- η :
 - Hints of transversity in inclusive jet and di-hadron asymmetries
 - Investigation of transverse single-spin asymmetries for the first time in inclusive jets at central pseudorapidity and $\sqrt{s} = 500 \text{ GeV}$
 - Extension of existing Collins and IFF analyses to higher statistical precision and reduced systematics (Run-12)

- Transverse spin physics: another path to understand proton spin structure
- STAR investigation of large transverse asymmetries at forward- η :
 - Persistence of sizable asymmetries at forward pseudorapidity to $p_T \sim 10$ GeV/c
 - Precise investigation of A_N dependence of on event topology

ightarrow asymmetries in jet-like π^{0} are smaller than asymmetries in isolated π^{0}

- Investigation of forward calorimeter jets at Vs = 500 GeV underway
- Measurement of $\pi^0 A_N$ for the first time at intermediate pseudorapidity (1 < η < 2)
- STAR investigation of transverse spin effects at central- η :
 - Hints of transversity in inclusive jet and di-hadron asymmetries
 - Investigation of transverse single-spin asymmetries for the first time in inclusive jets at central pseudorapidity and $\sqrt{s} = 500 \text{ GeV}$
 - Extension of existing Collins and IFF analyses to higher statistical precision and reduced systematics (Run-12)
- Future endeavors include direct photons at forward- η and investigation of transverse-spin phenomena in p+Au collisions

Back-up Slides

Setting the Stage: Inclusive Asymmetries

SIDIS Results: Sivers and Collins Asymmetries

Eur. Phys. J. A 39, 89 (2009); Nucl. Phys. B (Proc. Suppl.) 191, 98 (2009)

Assume:

factorized functional
form for Sivers function
tune to SIDIS to
parameterize

Assume:

factorized functional form
 for Collins and transversity
 function

- tune to SIDIS and e^+e^- to

parameterize

STAR Transverse Spin - Drachenberg

Forward Neutral-energy Jets

Goals: to correlate jets with neutral energy in the FMS with that of EEMC+BEMC (-1 < η < 2) and find A_N for jets and inclusive pions for various event topologies

simulation study on PYTHIA events with FMS only PYTHIA is used for p+p at $\sqrt{s} = 500 \text{ GeV}$ Larger fraction of jets in FMS: $x_F > 0.3$ p_T -hard > 7 GeV/c

After associating a detector-photon jet with a particle-photon jet in FMS

STAR Transverse Spin - Drachenberg

Observed di-jet asymmetries much smaller than observed at SIDIS → Cancellation of initial vs. final state interactions, u vs. d quark effects, and small gluon Sivers effect?

IFF's: Definition of Vectors and Angles

Forward Direct Photons

40 pb⁻¹ sufficient to distinguish between model assumptions

A_N from p+Au Collisions

40 pb⁻¹ p+p and 300 nb⁻¹ p+Au are sufficient to measure transverse spin observables in pA