Recent results on central exclusive production with the STAR detector at RHIC

Tomáš Truhlář

for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

> 56th Rencontres de Moriond 2022 19 - 26 March 2022, La Thuile, Italy

- Colliding protons stay intact and are measured in the Roman Pots (RP)
- Produced **central** system X is well separated by rapidity gaps $\Delta \eta_{1,2}$ from the outgoing protons p
- **Central** system X is fully measured in the Time Projection Chamber (TPC) and in the Time-of-Flight (TOF) systems

Possible mechanisms of CEP:

- Double Photon Exchange $\gamma+\gamma\to\gamma\gamma, I^+I^-, W^+W^-$
- Photon Pomeron/ Regeon fusion (photoproduction) $\gamma + \mathbb{P}/\mathbb{R} \rightarrow$ (pseudo)vector mesons, continuum
- Double Pomeron Exchange
 - ${\rm I\!P} + {\rm I\!P} \rightarrow$ continuum, scalar/tensor mesons, glueballs

$\ensuremath{\mathsf{DPE}}$ is expected to be dominant at the RHIC energies

 $\Delta \eta$

X

 $p + p \rightarrow p \stackrel{\Delta \eta_1}{\oplus} X \stackrel{\Delta \eta_2}{\oplus} p$

 $\Delta \eta_{-}$

- CEP of h^+h^- is the simplest four(three) body QCD process: $p + p \rightarrow p + M(h^+h^-) + p$
- Topologically simple, theoretically complex and rich in phenomena
- Pomeron in QCD at lowest order is represented by a pair of gluons \Rightarrow DIPE is suitable for glueball production
- Dominantly low masses produced ($\lesssim 2$ GeV), lack of hard scale and pQCD not applicable
- Significant rescattering (absorption) effects via additional interaction between the protons
- Significant interference effects between resonance and continuum production

- Two phenomenological models based on Regge theory implemented in the form of MC generator:
 - **DiMe**: L.A. Harland-Lang et al., Eur. Phys. J. C72 (2012) 2110 The phenomenology of CEP at hadron collider (dynamical treatment of absorption effects)
 - **GenEx**: P. Lebiedowicz and A. Szczurek, Phys. Rev. D81(2010)036003 Exclusive $pp \rightarrow pp\pi\pi$ from the threshold to LHC (without absorptive corrections)
- Models can generate only continuum production
- Continuum also generated in Pythia8, with MBR model R. Ciesielski, K. Goulianos, arXiv:1205.1446
- GRANIITTI, a MC generator for high energy diffraction M. Mieskolainen, arXiv:1910.06300
- GRANIITTI calculates inv. mass spectra assuming continuum and resonances contributions $M = f_0(500), \ \rho(770), \ f_0(980), \ \phi(1020), \ f_2(1270), \ f_0(1500), \ f_2(1525), \ f_0(1710)$
- Added CEP resonance couplings also tuned to STAR results at $\sqrt{s}=$ 200 GeV

- Tracking of charged particles in the TPC covering $|\eta| < 1$ and full azimuthal angle
- Precise particle identification through the measurement of dE/dx and TOF
- Forward rapidity Beam-Beam Counters $(2.1 < |\eta| < 5.0)$ used to ensure rapidity gaps
- Silicon Strip Detectors (SSD) in RP allow full reconstruction of the forward proton momentum and verification of interaction's exclusivity

Experimental setup - Roman Pots (RP)

- Roman Pot Phase II* setup has been used since 2015
 S. Bültmann et al., Nucl. Instr. Meth. A535, 415 (2004)
- Detectors are mounted in 4 stations, 2 stations on each side of STAR
- Each station holds one RP above and one RP below the beamline
- Each RP vessel contains a SSD package with active area of \sim 8 \times 5 cm²
- Each package consists of a scintillation trigger counter and 4 SSDs with spatial resolution of $\approx~30~\mu{\rm m}$

Exclusivity verification

- Outgoing protons pp and cental system h^+h^- are fully measured
- The momentum conservation is used to verify exclusivity of the process

Data sample & event selection

STAR 🛧

Data sample:

- Data from proton-proton collisions at $\sqrt{s}=510~{
 m GeV}$
- 622M events with CEP triggers were analyzed

Events selection:

- Exactly two tracks in Roman Pots inside the p_x , p_y fiducial region with all eight silicon planes used in reconstruction
- Exactly two primary TPC tracks matched with two TOF hits and originating from the same vertex
- Total charge of those tracks equals 0 (looking for h^+h^-)
- |z-position of vertex| < 80 cm
- + Good TPC track quality cuts and $|\eta| < 0.7$
- Exclusivity cut: $p_{\rm T}^{\rm miss} < 100~{\rm MeV}$
- Particles were identified using the $d\mathsf{E}/d\mathsf{x}$ and TOF
- After all the above selection criteria: 62077 $\pi^+\pi^-,$ 1697 K^+K^- and 125 $p\bar{p}$

 Four times better precision of the cross section compared to previous DIPE measurement with forward proton tagging

• Spectra were divided into two $\Delta \varphi$ regions, the difference of azimuthal angles of the forward protons \Rightarrow different Pomeron dynamics

• A peak at 1 GeV (possible $\phi(1020)$ or $f_0(980)$) is close to the K^+K^- mass threshold \Rightarrow more studies have to be done

• The invariant mass spectrum of $p\bar{p}$ pairs does not show any resonances

Summary

- Results on the CEP of $\pi^+\pi^-$, K^+K^- and $p\bar{p}$ pairs in pp collisions at $\sqrt{s} = 200$ and 510 GeV measured by the STAR experiment at RHIC have been presented
- These are currently the highest center-of-mass energies at which the Double IPomeron Exchange has been measured with the detection of the forward-scattered protons
- Measurement of the diffractively scattered protons allowed full control of the interaction's kinematics and verification of its exclusivity
- High precision of this measurement, should help to constrain free parameters of the models
- The new MC generator, GRANIITTI, was compared to the data at $\sqrt{s}=510~{\rm GeV}$ giving promising results
- The invariant mass spectra of $\pi^+\pi^-$, K^+K^- and $p\overline{p}$ pairs confirmed features seen in previous measurements
- Interesting features are seen, like the peak at about 1 GeV in K^+K^- at $\sqrt{s}=510$ GeV

Thank you!

Backup

• Particles were identified using combined information from the TPC $(\chi^2_{dE/dx})$ and TOF (m^2_{TOF})

$$\chi^{2}_{dE/dx}(h^{+}h^{-}) = (n\sigma_{h^{+}})^{2} + (n\sigma_{h^{-}})^{2}$$
(1)

• m_{TOF}^2 is derived from the assumption that both particles are of the same type ($m_1^2 = m_2^2 = m_{\text{TOF}}^2$)

- $\pi^+\pi^-$ pairs production is dominant, as expected in DPE process at RHIC energies
- Kaons and protons can be seen in $dE/dx\ plot$
- Peaks of pions, kaons and protons about their real mass squared can be seen
- $\bullet\,$ Pions misidentified as kaons, using only the dE/dx information, can be seen as well

