Quarkonia production in the STAR experiment

Barbara Trzeciak for the STAR Collaboration Warsaw University of Technology/ Lawrence Berkeley National Laboratory

Quark Matter 2012 Washington D.C. (USA) 14 August 2012

Outline

Motivation

- J/ψ production in p+p, d+Au and Au+Au collisions at 200 GeV
 - spectra, polarization, RAA, elliptic flow
- Y in p+p and Au+Au collisions at 200 GeV
 - cross section, R_{AA}
- Summary

Quarkonia at RHIC - Motivation

<u>Charmonia</u>: $\mathcal{J}/\psi, \psi', \chi_c$ <u>Bottomonia</u>: $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \chi_b$

- ✓ Quarkonia suppression in QGP in heavy-ion collisions due to color screening
- ✓ Suppression of different states is determined by T_C and their binding energy QGP thermometer

 $R_{AA} = \frac{1}{N_{coll}} \frac{dN/dy_{A+A}}{dN/dy_{a+A}}$

Quarkonia at RHIC - Motivation (2)

- ✓ But there are more complications:
 - Still unknown quarkonia Production Mechanism
 - Cold Nuclear Matter Effects, e.g. nuclear shadowing, Cronin effect, nuclear absorption
 - Other Hot Nuclear Matter Effects,
 e.g regeneration
- Y very rare but a cleaner probe compare to J/ψ:
 negligible co-mover absorption and recombination
 - ✓ Measure quarkonia production for different colliding systems, centralities and collision energies
 - → p_T spectra, R_{AA} , polarization, elliptic flow ...

 $\underline{7/\psi} \rightarrow e^+ e^- (BR 5.9\%)$

- / Large acceptance:
 - $\bullet |\eta| < 1, 0 < \phi < 2\pi$
- Time Projection Chamber (*TPC*)
 - Tracking: p_T , η , ϕ
 - → dE/dx: **PID**
- ✓ Time of Flight (*TOF*)
 - ➡ Timing resolution < 100 ps</p>
 - → $1/\beta$: **PID**
- Barrel Electromagnetic Calorimeter (**BEMC**)
 - Tower $\Delta \eta \ge \Delta \phi = 0.05 \ge 0.05$
 - Energy: E/p ~ 1 (for electrons)
 PID
 - Trigger

STAR EXPERIMENT, PID

 $\underline{\gamma \rightarrow e^+e^-} (BR \ 2.4\%)$

J/ψ spectra in p+p collisions at 200 GeV

2010

STAR

J/ψ polarization in p+p collisions at 200 GeV

Discrimination power between different J/ψ production models at high-p_T

PHENIX: Phys. Rev. D 82, 012001 (2010) COM: Phys. Rev. D 81, 014020 (2010) CSM NLO⁺: Phys. Lett. B, 695, 149 (2011)

- ✓ Polarization parameter λ_θ is measured in helicity frame at |y| <1 and 2 < p_T < 6 GeV/c
- λ_θ is consistent with NLO⁺
 CSM and COM models
 predictions, and with no
 polarization within current
 uncertainties

J/Ψ R_{AA} in d+Au collisions at 200 GeV

✓ Measurement of J/ψ in d+Au collisions provides information on CNM effects

- ✓ Good agreement with model predictions using EPS09 nPDF parametrization for the shadowing, and a J/ψ nuclear absorption cross section $\sigma_{abs}^{J/\psi} = 2.8^{+3.5}_{-2.6} (stat.)^{+4.0}_{-2.8} (syst.)^{+1.8}_{-1.1} (EPS09)$ mb
- ✓ STAR results consistent with PHENIX measurements

J/ψ spectra in Au+Au collisions at 200 GeV

STAR

- \checkmark J/ ψ suppression decreases with p_T across the centrality range
- $\checkmark \quad At low p_T data agree with two models including color screening and regeneration effects$
- ✓ At high p_T Liu et al. model describes data reasonable well, while Zhao and Rapp model underpredicts R_{AA} at $N_{part} > 70$

J/ψ v₂ in semi-central Au+Au collisions at 200 GeV

The $J/\psi v_2$ measurement is crucial for the test of charm quark recombination effect

J/ψ v₂ is consistent with non flow at p_T > 2 GeV/c - disfavors the case when J/ψ is produced dominantly by coalescence from thermalized (anti-)charm quarks

Models	χ²/ndf	P-value	
Initially produced	1.8/3	6.2e-1	1
Coalescence at freezeout	22.6/3	4.9e-5	
Coalescence In transport	13.9/3	3.0e-3	
Coalescence In transport	4.8/3	1.8e-1	
Coalescence +initial mix	2.9/3	4.0e-1	1
Coalescence +initial mix	1.8/4	7.7e-1	1
Hydro T=120 w/viscosity	16.5/3	9.2e-4	
Hydro T=165w/ viscosity	14.9/3	1.9e-03	
Hydro T=120 w/o viscosity	191.6/3	2.7e-41	
Hydro T=165w/o viscosity	237.3/3	0.0	

14 August 2012

Benefit from high DAQ rate and dedicated Upsilon trigger **improved statistics**

p+p $\Upsilon(1S+2S+3S) \rightarrow e^+e^-$ cross section consistent with pQCD and world data trend

Y(IS+2S+3S) R_{AA} in Au+Au collisions at 200 GeV

- ✓ Comparison with dynamic model with fireball expansion and quarkonium feed-down, calculation included variation of initial η /*S* and T₀
- ✓ Results are consistent with complete melting of 3S and very strong suppression of 2S in central collisions in this model

- Y(1S+2S+3S) Au+Au results consistent with the model that predicts complete melting of 3S and strong 2S suppression
- → $p+p \Upsilon(1S+2S+3S) \rightarrow e^+e^-$ cross section consistent with pQCD and world data trend
- J/ψ suppression in Au+Au collisions increases with centrality and decreases with p_T - at high p_T suppression only for central collisions
- ⇒ $J/\psi v_2$ consistent with zero at $p_T > 2$ GeV/c disfavors the case when J/ψ is produced dominantly by coalescence from thermalized (anti-)charm quarks at higher p_T
- → $J/\psi R_{dAu}$ consistent with the model using EPS09+ $\sigma_{abs}^{J/\psi}$ (3 mb)
- → NLO CS+CO and CEM models describe $J/\psi p_T$ spectrum in p+p collisions
- J/ψ polarization in p+p collisions consistent with NLO⁺ CSM and COM models predictions, and with no polarization

