1	Di-Hadron Photoproduction in Au+Au 200 GeV
2	Ultra Peripheral Collisions
3	Xin Wu (for the STAR Collaboration)
4	University of Science and Technology of China

Relativistic heavy-ion collisions generate extremely strong electromagnetic fields, providing an ideal environment to study the electromagnetic excitation of the vacuum. The Breit-Wheeler process, the lowest-order decay mode of the QED vacuum excitation into electron-positron pairs, has been experimentally verified by the STAR collaboration, stimulating further investigations of higherorder decay modes, such as baryon-antibaryon and meson-antimeson pairs.

This presentation reports the first measurements of baryon-antibaryon and meson-antimeson pairs from QED vacuum excitation in Au+Au ultra-peripheral collisions at $\sqrt{s_{\rm NN}} = 200$ GeV by the STAR experiment. The invariant mass and pair $p_{\rm T}$ distributions are shown. These measurements will shed new light on the understanding of the QED vacuum.