

Lepton Pair Production via Two-Photon Process at STAR

Wangmei Zha for the STAR Collaboration University of Science and Technology of China

The first international workshop on the physics of Ultra Peripheral Collisions, Playa del Carmen, Mexico, Dec. 12, 2023

The giant electromagnetic field in heavy-ion collisions

Clouds of quasi-real photons being present with heavy nuclei

$$n(\omega, r_{\perp}) = \frac{4Z^{2}\alpha}{\omega} \left| \int \frac{\vec{q}_{\perp}}{(2\pi)^{2}} \vec{q}_{\perp} \frac{f(\vec{q})}{q^{2}} e^{i\vec{q}_{\perp} \cdot \vec{r}_{\perp}} \right|^{2}$$
 Equivalent Photon
$$\vec{q} = \left(\vec{q}_{\perp}, \frac{\omega}{\gamma}\right)$$
 Approximation

The collisions of the electromagnetic field

Electromagnetic interaction

interactions

interactions

PRC 89 (2014) 014906

The abundant photon induced reactions

UPC related physics Ш The physics of photoproduction

collider		RHIC	RHIC	LHC
species		Au+Au	U+U	Pb+Pb
$\sqrt{s_{NN}}$	GeV	200	192.8	5520
BFPP	b	117	329	272
single EMD	b	94.15	150.1	215
$mutual \ EMD$	b	3.79	7.59	6.2
nuclear	b	7.31	8.2	7.9
total	b	218.46	487.3	494.9

The equipment (STAR) to photograph the collisions

Electron Identification at STAR

Excellent electron identification in MB and UPC Purity > 99%

The observation of Breit-Wheeler process

The Simplest process to convert energy to matter

The observation of Breit-Wheeler process

STAR, PRL 127 (2021) 052302

1934 Breit & Wheeler : "Collision of two Light Quanta" Physical Review **46** (1934): 1087

The beginning of the story in non-UPC

- Significant enhancement of J/ψ yield observed at very low p_T in peripheral heavy-ion collisions.
- Origin from coherent photon-nucleus interactions!
- New probe for QGP?

The B-W process in non-UPC

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- The excess can be described by the coherent photon-photon process!

The transverse momentum broadening

Possible medium effects --- magnetic field trapped in the QGP?

The impact parameter dependence

UPC2023- Wangmei Zha

The room for QGP effect

J.D. Brandenburg etal., Rep. Prog. Phys. 86 (2023) 083901

~20 times more statistics

Push for more precise multi-differential measurements

The Birefringence and linear polarization

The photons are linearly polarized!

QED Vacuum Birefringence

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

 $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \text{ leads to } \cos n\phi$ modulation for polarized two gamma fusion

$$\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$$

$$\approx \Delta \phi[(e^+ + e^-), e^+]$$

The first observation of angular modulation for B-W process in heavyion collisions.

The double slits interference in polarization space

PRD 103 (2021), 033007

Linearly polarized photons

Decay along the impact parameter

$$\frac{d^2 N}{d\cos\theta d\phi} = \frac{3}{8\pi} \sin^2\theta [1 + \cos 2(\phi - \Phi)]$$

UPC2023- Wangmei Zha

The second

order

modulation

The double slits interference in polarization space

STAR, Sci. Adv. 9 (2023) eabq3903

Β

 $2 \langle \cos(2\phi) \rangle$

0.2

0

0.05

Example of EPR paradox

Figure from Zhangbu

The life time ρ : ~1fm/c

b ~20fm

[1] Xing, H et.al. J. High Ener. Phys. 2020, 64 (2020).
[2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D 103, 033007 (2021)

STAR Signal $\pi^+\pi^-$ pairs vs. Models

0.1

∔ Au+Au √s_{NN}=200 GeV

Model I: R=6.38 fm, a=0.535 fm

---- Model II: R=6.9 fm, a=0.535 fm

0.15

0.2

 P_{T} (GeV)

Prediction for U? Second peak?

Sensitive to the nuclear geometry / gluon distribution

0.25

• Observation of Breit-Wheeler process in HIC

Existence of B-W process in HHIC – Novel probe for QGP
 Impact parameter dependence
 More precise measurement toward central collision
 More solid theoretical baseline

The linearly polarized photons in HIC
 -Angular modulation for B-W process --- link to Vacuum Birefringence
 -Double-slit interference in polarization space for photoproduction