

UPC 2023 First international workshop on the physics of Ultra Peripheral Collisions

Dimuon production at low transverse momentum in peripheral Au+Au collisions at $\sqrt{S_{NN}} = 200$ GeV at STAR

Ziyang Li (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics,

Department of Modern Physics,

University of Science and Technology of China

Supported in part by the

Photon-induced process

 $\nu \approx c$

 $(\vec{E} \perp \vec{B} \perp \vec{k})$

- Boosted nuclei generate intense electromagnetic fields
- Weizsacker-Williams equivalent photon approximation (EPA):
 ➤ In a specific phase space, transverse EM fields can be quantized as a flux of quasi-real photons
 n ∝ S = 1/μ0 E × B ≈ |E|² ≈ |B|²
- Large quasi-real photon flux $\propto Z^2$

 \vec{B}

 \vec{E}

Photoproduction with nuclear overlap

- Significant enhancements of J/ψ and dielectron pair production at very low p_T (below ~ 0.2 GeV/c)
- Evidence of coherent photon interactions in hadronic heavy-ion collisions

t spectra of photoproduced J/ψ

 J/ψ as a function of the momentum transfer squared (- $t \approx p_T^2$) from STAR UPC measurements

STAR: arXiv:2311.13632 [nucl-ex]

0.08

reflects the size and shape of nuclear target:

within uncertainties

> 177 ± 23 (GeV/c)⁻², consistent with that

expected for an Au nucleus [199 (GeV/c)⁻²]

Sensitivity to electromagnetic field trapped in QGP?

STAR: Phys. Rev. Lett. 121, 132301 (2018) W. Zha et al., Phys. Lett. B 800 (2020) 135089

solid line : exponential fit to the Au+Au data

- $p_{\rm T}^2$ spectra is measured in different dielectron mass regions
- Calculated $p_{\rm T}^2$ spectra with EM effects can describe the data much better than the same model without EM effects
 - The level of $p_{\rm T}$ broadening may indicate the existence of strong magnetic field trapped in a conducting QGP?
 - Or due to the QED scattering between the lepton pair and the medium?

-Spencer Klein et al., Phys. Rev. Lett. 122 (2019) 132301

Sensitivity to electromagnetic field trapped in QGP?

STAR

STAR: Phys. Rev. Lett. 121, 132301 (2018) W. Zha et al., Phys. Lett. B 800 (2020) 135089

- The broadening originates predominantly from the initial electromagnetic field strength that varies significantly with impact parameter
- An additional small broadening may be due to final-state interaction

Sensitivity to electromagnetic field trapped in QGP?

STAR

STAR: Phys. Rev. Lett. 121, 132301 (2018) W. Zha et al., Phys. Lett. B 800 (2020) 135089

 Dimuon channel measurements are complementary to dielectron results and can help to further improve our understanding of photoproduction processes in peripheral heavy-ion collisions

The Solenoidal Tracker At RHIC (STAR)

TPC:

 dE/dx cut: muons are expected to lose about 0.5σ more energy compared to pions;
 -1 < nσ_π< 3

MTD system:

- Fully installed in 2014, behind the magnet (~ 5 interaction length)
- p_{τ} threshold for MTD ~ 1.2 GeV/c

MTD system provides the capability of muon pair measurement in the high mass region

Position and timing information from MTD

- Precise timing measurement ($\sigma \sim 100 \text{ ps}$)
 - Arrival time: Δtof cut
- Intrinsic spatial resolution (~ 1 cm)
 - Hit position: Δy and Δz cuts

$J/\psi \rightarrow \mu^+\mu^-$ signal extraction

- Muon pair mass distributions for $p_T < 0.15$ GeV/c in 40–60% and 60–80% centralities
- The raw signal is obtained from the combined fit of signal, mixed event combinatorial background and residual background using the Maximum Likelihood (ML) method
- Focus on the J/ ψ (2.9 < M_{µµ}< 3.2 GeV/c²) and high mass region (M_{µµ} > 3.2 GeV/c², shown later)

$J/\psi \rightarrow \mu^+\mu^-$ invariant yield and R_{AA}

- A large enhancement of the J/ ψ yield at low p_T in peripheral collisions
- Consistent with dielectron channel results

- The slope parameter is 153 ± 55 (GeV/c)⁻², consistent with the e⁺e⁻ channel results, 177 ± 23 (GeV/c)⁻²
- The first data point is significantly lower than the extrapolation of the exponential fit
 - Indication of interference

$J/\psi \rightarrow \mu^+\mu^-$ excess yield

- No obvious centrality dependence of low p_{T} yields
- Excess yield consistent with equivalent photon approximation (EPA) calculation
 - In EPA calculation, the photon emitter is the whole nucleus and the Pomeron emitter is spectator nucleons

- Clear enhancement with respect to the cocktail in 40-60% and 60-80% centrality classes
 - Cocktail : simulation includes $c\overline{c}$, $b\overline{b}$, and Drell-Yan production
- Consistent with the theoretical calculation

High mass $\mu^+\mu^-$: p_T distributions

- Excesses concentrate below $p_T \sim 0.1$ GeV/c
- Data are consistent with hadronic expectation for $p_T > 0.1$ GeV/c
- EPA-QED calculations are compatible with data

Muon PID in low momentum region

• TPC+TOF : dimuon measurement in low mass region

Efficiency estimation for $\mu^+\mu^-$ pairs

• Toy Monte Carlo approach.

Default: input virtual photons decay into dimuon pairs isotropically > Use theoretical calculation of $\gamma\gamma \rightarrow \mu\mu$ as input to estimate systematic uncertainty

Low mass $\mu^+\mu^-$: Invariant mass spectra

STAR

EPA -QED: W. Zha et al., Phys. Lett. B 800, 135089 (2020)

- Excess yields (Data Cocktail) are extracted
- Consistent with the EPA-QED calculations in the two different centrality classes
 - Different shapes for e+e- and µ+µ-: mass difference of muons and electrons, resulting in the different acceptance in the narrow momentum range

Low mass $\mu^+\mu^-$: p_T and t distributions

- Excesses concentrate below $p_{\rm T} \approx$ 0.1 GeV/c
- Data in favor of EPA-QED calculation over STARlight

Summary

- First measurement of dimuon production in low and high mass range at very low p_T in peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Significant J/ ψ and $\mu^+\mu^-$ enhancements are observed
- The EPA-QED calculations can describe data, indicating the enhancements at very low p_T originate from photon-induced interactions.
 - Better precision is needed to pin down whether the effect of EM fields trapped in the QGP is present in these measurements

Summary

- First measurement of dimuon production in low and high mass range at very low p_T in peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Significant J/ ψ and $\mu^+\mu^-$ enhancements are observed
- The EPA-QED calculations can describe data, indicating the enhancements at very low p_T originate from photon-induced interactions.
 - Better precision is needed to pin down whether the effect of EM fields trapped in the QGP is present in these measurements

Thank you