Probing proton-antiproton production from QED Vacuum Excitation and Spin-Interference in Drell-Söding process in Ultra-Peripheral Au+Au Collisions at STAR

Xinbai Li, for STAR Collaboration (<u>xinbai@mail.ustc.edu.cn</u>) 13rd June UPC 2025

Outline

- **□** Equivalent photon in heavy ion collisions
- □ Vacuum pair production
- **D** Observation of proton-antiproton production
- $\square \rho^0$ photoproduction and Drell-Söding process
- **Spin-interference effect**
- **Observation of spin-interference in Drell-Söding process**

Quasi-real photons in Relativistic Heavy-Ion Collisions

In heavy-ion collisions:

 $E_{Max} = \frac{Ze\gamma}{b^2} \approx 5 \times 10^{20} - 10^{22} \text{ V/cm}; \quad B_{Max} = 10^{14} - 10^{16} \text{ T}$

- Strongest EM fields in the Universe
- But very short lifetime not constant
- Photons are linearly polarized

- Photon as nuclear parton
- Electromagnetic radius $R_{EM} > R_{mass}$

Vacuum pair production

- Explore non-linear and non-perturbative QED above the Schwinger limit
- Test for physics beyond standard model
- Breit-Wheeler process $(\gamma \gamma \rightarrow e^+ e^-)$ observed, what about $\gamma \gamma \rightarrow p\bar{p}$?

The Solenoidal Tracker At RHIC

TPC: track and vertex reconstruction; particle identification. (full ϕ coverage, $|\eta| < 1$)

TOF: fast response detector (pile-up suppression)

Trigger: Activity in TOF, BBC veto, ZDC coincidence (For UPC analysis) **Event selection:** |Vz| < 100 cm, 2 primary tracks with TOF matched hits

Track & pair selection

Track selection:

- ✓ $p_T > 0.2 \text{ GeV/c}, |\eta| < 0.9$
- $\checkmark DCA_p \le 0.5 \text{ cm}, DCA_{\bar{p}} \le 1.5 \text{ cm}$
- ✓ nHitsFit ≥ 20, nHitsDedx ≥ 15, nHitsFitRatio ≥ 0.52

Pair selection:

✓ $0.05 < |y_{pair}| < 0.5$

PID:

✓
$$\chi^2_{pp} = n\sigma^2_{p,1} + n\sigma^2_{p,2} < 4$$

✓ $n\sigma_e > 2; n\sigma_\pi > 3$

Physical background

• Photon-nuclear interaction

Physical background

• Photon-nuclear interaction

- Validated by model calculation with Drell-Söding process compared with exclusive $\pi^+\pi^-$ measurement
- Non-visible in the selected mass range $2.1 < M_{p\bar{p}} < 2.4 \text{ GeV/c}^2$ (shown in P9)
- Need further consideration of the model uncertainty

Physical background

• Photon-nuclear interaction

Calculate using vector meson dominance model

Vector meson $J/\psi \rightarrow p\bar{p}$

Negligible impact near threshold $2m_p$

Differential cross section

- Observation of $\gamma \gamma \rightarrow p \bar{p}$ (from vacuum excitation at extremely low Q^2) in Au+Au UPC collisions at $\sqrt{s_{NN}} = 200$ GeV with $\sigma = 2.6 \pm 0.4(stat) \pm 0.5(sys) \,\mu b$
- Current models struggle to match the data
- Future run 23-25 collected data help improve statistics for angular momentum study

Equivalent photon in heavy ion collisions

Vacuum pair production

Observation of proton-antiproton production

 $\square \rho^0$ photoproduction and Drell-Söding process

□ Spin-interference effect

Observation of spin-interference in Drell-Söding process

Photon induced process

- For $\rho^0 \to \pi^+\pi^-$ (resonance) and Drell-Söding $\pi^+\pi^-$ (continuum)
- Söding mechanism (skewed mass shape):

P. Soding Phys. Lett. 19 (1966) 702

$$\frac{d\sigma}{dM} = \left| A_{\rho^0}(M) + A_{S\"oding}(M) \right|^2$$

Spin-Interference effect

"Which path issue" + different phase angle = double-slit interference

$$\frac{d^2 P}{dp_x dp_y} = \frac{1}{2\pi} \left| \int d^2 r \left[A_1 \left(y, \mathbf{r}, -\frac{b}{2} \right) + A_2 \left(y, \mathbf{r}, \frac{b}{2} \right) \right] e^{i\mathbf{p}\cdot\mathbf{r}} \right|^2 \qquad \qquad \frac{d^2 N}{d\cos\theta d\phi} = \frac{3}{8\pi} \sin^2\theta [1 + \cos 2(\phi - \Phi)],$$

Drell-Söding process

Originally proposed to

• Produce charge π/K beam

S.D. Drell, Rev. Mod. Phys. 33 (1961) 458

S.D.Drell, Phys. Rev. Letters 5 (1960) 278

- Peripheral cross section
- Mass shift of ρ^0

. . .

P. Soding Phys. Lett. 19 (1966) 702

• Precise measurement of Drell-Söding process

The key to precisely measure such small contribution to the total exclusive $\pi^+\pi^-$ production

Drell-Söding process & ρ^0 photoproduction

Through comparison between two processes

- Does ρ^0 and Drell-Söding via photon nuclear interaction have the same p_T distribution?
- Does the EESI exist in the Drell-Söding process? If yes, what's the difference (coherence loss, entanglement)?
- ρ^0 finite lifetime (undergo decay), S=1
- Drell-Söding $\pi^+\pi^-$ (w.o. decay), L=1,

asymmetricity in $\sigma_{\pi^+p} + \sigma_{\pi^-p}$ (5%)

Different dipole size!

Algorithm for signal extraction

$$\frac{d\sigma}{dM_{\pi^{+}\pi^{-}}} = \left| A_{\rho} \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma_{\rho}}}{M_{\pi\pi}^{2} - M_{\rho}^{2} + iM_{\rho}\Gamma_{\rho}} f_{fluxcorr}(M_{\pi\pi}) + Bf_{Söding}(M_{\pi\pi}) + C_{\omega}e^{i\phi_{\omega}} \frac{\sqrt{M_{\pi\pi}M_{\omega}\Gamma_{\omega\to\pi\pi}}}{M_{\pi\pi}^{2} - M_{\omega}^{2} + iM_{\omega}\Gamma_{\omega}} \right|^{2} + f_{dimuon} + f_{background}$$

$$\Gamma_{\rho} = \Gamma_{0} \frac{M_{\rho}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^{2} - 4m_{\pi}^{2}}{M_{\rho}^{2} - 4m_{\pi}^{2}} \right)^{3/2}, \qquad \Gamma_{\omega} = \Gamma_{0} \frac{M_{\omega}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^{2} - 9m_{\pi}^{2}}{M_{\omega}^{2} - 9m_{\pi}^{2}} \right)^{3/2}, \qquad \Gamma_{\omega \to \pi\pi} = \operatorname{Br}(\omega \to \pi\pi) \Gamma_{0} \frac{M_{\omega}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^{2} - 4m_{\pi}^{2}}{M_{\omega}^{2} - 4m_{\pi}^{2}} \right)^{3/2},$$

Theoretical input

Leverage the validated theoretical input (use only the shape for Söding & consider the uncertainty due to model dependence) f_{mr}

$$A_{nr} = \frac{J_{nr}}{(m_{\pi\pi}^2 - 4m_{\pi}^2 + \Lambda_{nr}^2)^{\delta_{nr}}}$$

Analysis flow

Diffractive p_T spectra

- Drell-Söding has a softer p_T spectrum compared to ρ^0 production
- Difference from 1) different $M_{\pi\pi}$ spectrum

2) larger dipole size $(p_T \cdot r \ge \hbar)$

Spin-Interference

 $\checkmark \quad \text{Similar } A_{2\Delta\phi} \text{ for low } p_T \quad (p_T \cdot x \ge \hbar)$

✓ An enhancement of $A_{2\Delta\phi}$ of Drell-Söding w.r.t ρ^0 for 0.05< p_T <0.1 GeV/c

Summary

- \checkmark Observation of proton-antiproton production from vacuum excitation
- \checkmark The cross section exceed the model prediction; Require further theoretical development
- ✓ First measurement of pair p_T and spin-interference of Drell-Söding process
- ✓ A softer pair p_T is observed for Drell-Söding compared to ρ^0 production
- ✓ An enhancement of $A_{2\Delta\phi}$ of Drell-Söding w.r.t ρ^0 for 0.05< p_T <0.1 GeV/c
- These results provide new insights into the interplay between spin-interference and photon-nuclear interactions in ultraperipheral heavy-ion collisions

Backup

Any questions and suggestions are welcome

In the meeting or after By email – xinbai@mail.ustc.edu.cn

Experimental measurements

Relativistic heavy-ion collisions

- The first Relativistic Heavy-Ion Collider in the world
- 762 members from 74 institutions in 15 countries (STAR)

- The hottest man-made strongly coupled matter Quarkgluon plasma (QGP)
- The strongest EM fields ($\sim 10^{15}$ T) ever known

Exclusive $\pi^+\pi^-$ production

D Multiple phenomenological generators in the market:

SuperChic, gamma-UPC, STARLight, Sartre ...

However, no individual Drell-Söding channel

□ Mass mixing of vector mesons (VMs)

\Box Well understood in e^-e^+ (no Söding mechanism)

$$F_{\pi} = \frac{BW_{\rho}(M_{\pi\pi}) + \beta BW_{\rho'}(M_{\pi\pi}) + \gamma BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$

Entanglement enabled interference

- **D** Distinguishable non-local final state $\pi^+\pi^-$
- □ Interference between waves with different wave frequencies —— Entanglement
- **D** Entanglement Enabled Spin Interference (EESI)

J. Cotler, F. Wilczek, V. Borish, Ann. Phys. 424 168346 (2021)

Y. Ma, Nucl. Sci. Tech. 34 16 (2023)

Image nuclei

Sensitive to nuclear geometry

Indicate one solution to the 20-year puzzle of unreasonably large nuclear radii extracted from photonuclear A+A interactions

Table 1. Results of the extracted radii from various methods and intermediate steps.

	R _{inclusive} (fm)	<i>R</i> (φ = 0) (fm)	R(φ = ± π /2) (fm)	Fitted R _o (fm) (Eq. 4)	Fitted R _o (fm) (Eq. 10)	Final (fm)
Au	7.47 ± 0.02	7.86 ± 0.03	7.15 ± 0.03	6.62 ± 0.03	6.72 ± 0.02	6.53 ± 0.03
U	7.98 ± 0.03	8.12 ± 0.06	7.60 ± 0.06	7.37 ± 0.07	7.37 ± 0.03	7.29 ± 0.06

STAR collaboration, sciadv.abq3903 (2023)

What we have and where we are going

Spin interference mostly performs in the transverse plane

□ Mass dependence? (wide resonance)

- Separate the ρ⁰ and Drell-Söding production
- Spin interference dynamics measurement for ρ⁰ and Drell-Söding

 $d^3\sigma$

 $N(p_T, M, \Delta \phi)$

 $\overline{dp_T dM d\Delta \phi} = \varepsilon_{BBCveto} * \varepsilon_{XnXn} * \varepsilon_{tofmult} * \varepsilon_{vzcut} * \varepsilon_{vtxalgo} * \varepsilon_{vtxloss} * Acc * \varepsilon_{TPC} * \varepsilon_{TOF} * \varepsilon_{PID} * Lumi * dphase$

 $N(p_T, M, \Delta \phi)$

 $\overline{\varepsilon_{trigger} * \varepsilon_{vtx} * Acc * \varepsilon_{TPC} * \varepsilon_{TOF} * \varepsilon_{PID} * Lumi * dphase}$

Samo for	$d^3\sigma$
Same IOI	$dp_T dM dy$

 $\varepsilon_{trigger}$ from ZDCmonitor trigger data ε_{vtx} from event starsim sample ε_{vz} from ZDCdt vs TPCVz deconvolutionAccfrom monte carlo simulation ε_{TPC} from particle gun starsim sample ε_{TOF} from mini-bias trigger data-driven ε_{PID} from upc-main trigger data-driven

Trigger Eff	tofMult & bbc veto	ZDCmax	Vz cut
Run10	0.901	0.391	0.864
Run11	0.906	0.371	0.905
Run14high	0.797	0.571	0.833
Run14low	0.788	0.599	0.816
Run14mid	0.767	0.593	0.793

Background estimation

Contamination from $\gamma\gamma$ fusion: mainly $\gamma\gamma ightarrow \mu^+\mu^-$

$$\begin{split} \hat{M} &= -ie^2 \int \frac{d^4 q_1}{(2\pi)^4} A^{(1)}(q_1) \frac{\not{p}_- - \not{q}_1 + m}{(p_- - q_1)^2 - m^2} A^{(2)}(p_+ + p_- - q_1) \\ &\quad - ie^2 \int \frac{d^4 q_1}{(2\pi)^4} A^{(2)}(p_+ + p_- - q_1) \frac{\not{q}_1 - \not{p}_+ + m}{(q_1 - p_+)^2 - m^2} A^{(1)}(q_1) \\ &= -i(\frac{Ze^2}{2\pi})^2 \frac{1}{2\beta} \int d^2 q_{1\perp} \frac{1}{q_1^2} \frac{1}{(p_+ + p_- - q_1)^2} \exp(\mathrm{i} q_{1\perp} \mathbf{b}) \\ &\quad \{ \frac{\psi^{(1)}(\not{p}_- - \not{q}_1 + m)\psi^{(2)}}{[(p_- - q_1)^2 - m^2]} + \frac{\psi^{(2)}(\not{q}_1 - \not{p}_+ + m)\psi^{(1)}}{[(q_1 - p_+)^2 - m^2]} \}, \end{split}$$

$$P(p_+, p_-, b) = \sum_s |M|^2$$

W. Zha et al., Phys. Lett. B 800 135089 (2020)

$$\Box \gamma \gamma \rightarrow \pi^{+}\pi^{-} \text{ is small } \sim 1/15 \text{ of S}\ddot{o}\text{ding}$$
$$\Box \gamma \gamma \rightarrow \mu^{+}\mu^{-} \text{ is comparable to S}\ddot{o}\text{ding mecha}$$

mass [GeV] 108, Z = 79meson = $\sigma^{
m red}$ $\sigma^{
m tot}$ $[\mu b]$ μb π^{\pm} 0.140 14762 12159 mass [GeV fermion $\gamma = 108, Z = 79$ $\sigma^{ ext{tot}}$ σ^{red} ub μb μ^{\pm} 0.1057 208329 177789

F. Krauss, M. Greiner and G. Soff, Prog. Parr. Nucl. Phys. 39 503 (1997)

M. Kłusek-Gawenda and A. Szczurek, Phys. Rev. C 87 054908 (2013)

Photon induced process

- For $\rho^0 \to \pi^+\pi^-$ (resonance) and Drell-Söding $\pi^+\pi^-$ (continuum)
- First generation quarks + same quantum number \rightarrow interference of two processes
- Söding mechanism (skewed mass shape): P. Soding Phys. Lett. 19 (1966) 702

$$\frac{d\sigma}{dM} = \left| A_{\rho^0}(M) + A_{S\"oding}(M) \right|^2$$

More related topics

"The entanglement in each event between π^+ and π^- is essential — it ensures that the decay products share a non-factorizable quantum state, encoding the spin and angular momentum of the parent ρ . The spin interference is not entanglement *between events*, **but** emerges from **coherent production amplitudes** in each event, **filtered through the entangled decay products' angular correlations**. This is aligned with the entanglement-enabled interferometry picture suggested by Cotler and Wilczek — though here, the entanglement is *intra-event*, while the observable pattern builds statistically over many events."

Materials

• For different years, the results were combined using the following formula:

 $\sigma_{combined} = \Sigma W_{\rm Run} \times \sigma_{Run}$

$$E_{combined}^{stat} = \sqrt{\Sigma(W_{Run} \times E_{stat})^2}$$
$$E_{combined}^{sys} = \Sigma W_{Run} \times E_{sys}$$

Materials

• The cross section for $\frac{d\sigma_{\gamma p \to \pi^+ \pi^- p}}{dM_{\pi^+ \pi^-}}$:

$$\frac{d\sigma}{dtdM_{\pi^{+}\pi^{-}}d\Omega} = \frac{q}{256\pi^{4}(s-m_{p}^{2})^{2}}|M|^{2}$$
$$M = e\left[\left(\frac{\epsilon \cdot q_{+}}{k \cdot q_{+}}\right)T_{-} - \left(\frac{\epsilon \cdot q_{-}}{k \cdot q_{-}}\right)T_{+} + \frac{\epsilon \cdot (p+p')}{k \cdot (p+p')}(T_{+} - T_{-})\right] \qquad T_{\pm} = 2i\sigma_{\pi p}\left[\left(q_{\pm} \cdot p'\right)^{2} - m_{\pi}^{2}m_{p}^{2}\right]^{1/2}e^{B_{\pm}t/2}$$

• The cross section in the momentum space:

$$\frac{d^{3}P}{dM_{\pi^{+}\pi^{-}}dp_{x}dp_{y}} = \left|\frac{1}{2\pi}\int d^{2}x_{\perp}[A_{1}(x_{\perp}) + A_{2}(x_{\perp})]e^{ip_{\perp}\cdot x_{\perp}}\right|^{2} \qquad \frac{d^{3}\sigma}{dM_{\pi^{+}\pi^{-}}dp_{x}dp_{y}} = \int \frac{d^{3}P}{dM_{\pi^{+}\pi^{-}}dp_{x}dp_{y}}P(b)2\pi bdb$$

- Luminosity: Common uncertainty for each run.
- TPC efficiency: Extracted from the difference between the embedding and data.
- TOF efficiency: Extracted from the difference between the calculated from the Λ decay proton and the TPC proton.
- PID efficiency: Extracted from different centralities.
- *V_z* cut efficiency: Extracted from the calculated difference between UPC data and zerobias data.

	Run 10	Run 11	Run14
Luminosity	10%	10%	10%
nHitsDedx	5%	3%	2%
nHitsFit	1%	1%	2%
DCA	6%	7%	14%
TOF	10%	9%	3%
PID	7%	7%	2%
V_z	1%	2%	2%
Total	18%	17%	18%

Materials

Run\sys uncert (%)	Fitting function	Fitting range	Mc model	nhitsfit	Dca	Vz	Lumi	track	Uncorr.	total	$ ho^0$
Run10	2.11	0.09	1.31	2.87	0.74	3.18	10.00	6.00	4.54	12.73	
Run11	2.59	1.20	12.73	1.70	2.64	0.88			13.15	17.77	
Run14high	1.24	0.02	0.06	6.63	4.12	3.56			8.67	14.78	
Run14low	1.50	0.08	0.32	3.71	1.68	3.39			5.52	13.04	
Run14mid	1.59	0.06	0.71	4.36	2.48	3.99			4.54	13.62	
Run\sys uncert (%)	Fitting function	Fitting range	Mc model	nhitsfit	Dca	Vz	Lumi	track	Uncorr.	total	Söding
Run\sys uncert (%) Run10	Fitting function 6.27	Fitting range 1.34	Mc model 6.01	nhitsfit 5.38	Dca 3.34	Vz 1.08	Lumi 10.00	track 6.00	Uncorr. 8.90	total 15.98	Söding
Run\sys uncert (%) Run10 Run11	Fitting function 6.27 15.56	Fitting range 1.34 0.98	Mc model 6.01 13.84	nhitsfit 5.38 14.07	Dca 3.34 18.58	Vz 1.08 20.73	Lumi 10.00 	track 6.00	Uncorr. 8.90 34.18	total 15.98 39.38	Söding
Run\sys uncert (%) Run10 Run11 Run14high	Fitting function 6.27 15.56 2.53	Fitting range 1.34 0.98 0.16	Mc model 6.01 13.84 4.93	nhitsfit 5.38 14.07 6.51	Dca 3.34 18.58 4.47	Vz 1.08 20.73 2.27	Lumi 10.00 	track 6.00 	Uncorr. 8.90 34.18 8.60	total 15.98 39.38 15.52	Söding
Run\sys uncert (%)Run10Run11Run14highRun14low	Fitting function 6.27 15.56 2.53 2.18	Fitting range 1.34 0.98 0.16 0.83	Mc model 6.01 13.84 4.93 5.30	nhitsfit 5.38 14.07 6.51 4.60	Dca 3.34 18.58 4.47 2.99	Vz 1.08 20.73 2.27 0.67	Lumi 10.00 	track 6.00 	Uncorr. 8.90 34.18 8.60 6.00	total 15.98 39.38 15.52 14.34	Söding

Spin-Interference effect

- Einstein-Podolsky-Rosen (EPR) pair
- Nonlocal wave & not fully overlap
- Polarized decay angular distribution

$$\frac{d^2N}{d\cos\theta d\phi} = \frac{3}{8\pi}\sin^2\theta [1 + \cos 2(\phi - \Phi)],$$

Spin-Interference (EESI)!