Search for Collectivity in Photo-nuclear Processes at RHIC using STAR Detector

Souvik Paul for the STAR Collaboration

Abstract

Investigating collective behavior due to the formation of a fluid-like medium in small collision systems has been a significant focus in the field. A tell-tale signature of this would be the medium's response to the initial state in small collision systems, as predicted by fluid-dynamic models.

⁶ Recent RHIC studies of small systems have shown a hierarchy of elliptic anisotropy ⁷ coefficients $(v_2({}^{3}\text{He}+\text{Au}) \sim v_2(\text{d}+\text{Au}) > v_2(\text{p}+\text{Au}))$ suggesting fluid-dynamic behavior ⁸ even in the smallest systems. This raises the question: could a photo-nuclear collision, ⁹ such as γ +Au also exhibit signatures of collectivity? Notably, signatures of collectivity ¹⁰ have been investigated in high-multiplicity, high energy γ +p/Pb collisions at the LHC.

In this work, we explore anisotropic flow in γ +Au processes at RHIC by triggering 11 ultra-peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. At this collision energy, the 12 maximum photon-nucleon center of mass energy $\frac{W_{\gamma N}^{\text{max}}}{W_{\gamma N}} \approx 34.7 \text{ GeV} [1]$, an energy be-13 tween d+Au collisions at $\sqrt{s_{NN}} = 19$ GeV and $\sqrt{s_{NN}} = 39$ GeV, previously performed 14 at RHIC. For both γ +Au and d+Au collisions, a similar multiplicity range is accessible 15 at STAR, making d+Au a suitable baseline system for comparison. Furthermore, the 16 STAR detector's extended rapidity coverage, with mid and forward rapidity upgrades 17 $(|\eta| < 1.5 \text{ and } 2.1 < |\eta| < 5.1)$ enables the triggering and analysis of photo-nuclear pro-18 cesses. Preliminary measurements of v_2 and v_3 in γ +Au collisions have been conducted 19 at multiplicities and energy levels comparable to those observed in d+Au collisions, 20 where collective behavior has already been established. These results will provide new 21 insights into collectivity in small collision systems, emphasizing the role of initial-state 22 effects and collective behavior in understanding the evolution of the fluid-like medium 23 created in various collision systems at RHIC. 24

25 References

1

2

3

4

5

[1] A.J. Baltz et al. The physics of ultraperipheral collisions at the lhc. *Physics Reports*, 458(1):1–171, 2008.