UPC2025: The second international workshop on the physics of Ultra Peripheral Collisions June 9-13, 2025

Investigating Spin Interference in photonuclear  $\gamma A \rightarrow \pi^+\pi^$ and  $\gamma \gamma \rightarrow \pi^+\pi^-$  at STAR

> Samuel Corey for the STAR Collaboration





**The Ohio State University** 



#### Motivation



#### Hadronic Light-by-Light and $a_{\mu}$

- Hadronic light-by-light (HLbyL) is one the two dominant theoretical uncertainties on  $a_{\mu}$ .
- Related to  $\gamma\gamma \rightarrow \pi^+\pi^-$  by the optical theorem.



- Previous measurements of  $\gamma\gamma \rightarrow \pi\pi$  are from  $e^-e^+$  collisions.
- In UPC, we have quasi-real photons and larger mass range



First Results from Fermilab's Muon g-2 Experiment Strengthen Evidence of New Physics; Fermilab, 7 April 2021.

Samuel Corey

#### Hadronic Light-by-Light and $a_{\mu}$

- Hadronic light-by-light (HLbyL) is one the two dominant theoretical uncertainties on  $a_{\mu}$ .
- Related to  $\gamma\gamma \rightarrow \pi^+\pi^-$  by the optical theorem.
- Previous measurements of  $\gamma\gamma \rightarrow \pi\pi$  are from  $e^-e^+$  collisions.
- In UPC, we have quasi-real photons and larger mass range



#### Spin Interference in UPCs

- In  $\gamma A$  events, one nucleus acts as the emitter and the other as the target.
- Double slit-like interference leads to a  $\cos(2\Delta\phi)$ angular anisotropy.

(Brandenburg et al., Phys. Rev. Research 7, 013131 (2025))

Samuel Corey

 $p_T^-$ 

 $\begin{bmatrix} P_{\perp} = p_T^+ + p_T^- \\ Q_{\perp} = \frac{1}{2}(p_T^+ - p_T^-) \end{bmatrix}$ 



#### Previous $(2\cos(2\Delta\phi))$ measurement



#### Previous $(2\cos(2\Delta\phi))$ measurement

• Photon spin encodes into final state orbital angular momentum:  $cos(2\Delta\phi)$ modulation.

 Present in A+A, but not p+A--photon emission scales with Z<sup>2</sup>



#### STAR, Sci.Adv.9, eabq3903 (2023)

#### Spin Interference between $\gamma A$ and $\gamma \gamma$

- Interference between  $\gamma A$  and  $\gamma \gamma$  also present.
- This interference is expected to produce a  $\cos(\Delta\phi)$  and  $\cos(3\Delta\phi)$ anisotropy.



#### $\Delta \phi$ distribution



• Uncorrected  $\Delta \phi$  distribution fit with:

 $C[1 + A_{1\Delta\phi}\cos(\Delta\phi) + A_{2\Delta\phi}\cos(2\Delta\phi) + A_{3\Delta\phi}\cos(3\Delta\phi)]$ 

• Large and highly significant  $A_{2\Delta\phi}$ .

•  $A_{1,3\Delta\phi} \neq 0$ : first hint that we have  $\gamma\gamma \rightarrow \pi^+\pi^-$ .

#### $\Delta \phi$ efficiency and acceptance correction

- Want to measure  $A_{n\Delta\phi} = \langle 2\cos(n\Delta\phi) \rangle$  as a function of  $p_T$ ,  $M_{\pi\pi}$ .
- $\Delta \phi$  has unique  $p_T$ ,  $M_{\pi\pi}$ -dependent acceptance effects.



10

#### $\Delta \phi$ efficiency and acceptance correction

• Consider  $\gamma, \alpha, \omega$  as measured, true, and distortion  $A_{n\Delta\phi}$  respectively.

$$\gamma_n = \frac{\int_{-\pi}^{\pi} \alpha(\Delta\phi)\omega(\Delta\phi)\cos(n\Delta\phi)\,d\Delta\phi}{\int_{-\pi}^{\pi} \alpha(\Delta\phi)\omega(\Delta\phi)\,d\Delta\phi}$$



- Expand  $\alpha(\Delta\phi), \omega(\Delta\phi)$  as Fourier series, and assume only one term nonzero.
- Computing integral and inverting for  $\alpha_n$  leaves:

$$\alpha_n = \frac{-2(\gamma_n - \omega_n)}{\gamma_n \times \omega_n - 2}$$

Samuel Corey

### $(2\cos(2\Delta\phi))$ vs. $M_{\pi\pi}$

- $\omega_n$  calculated with toy model using STAR acceptance.
- Correction applied in each bin in  $p_T, M_{\pi\pi}$ , then projected.





Left of solid line: previous STAR result

#### $(2\cos(1,3\Delta\phi))$ measurement



- Interference between  $\gamma A \rightarrow \rho^0 \rightarrow \pi^+ \pi^-$  and non-resonant  $\gamma \gamma \rightarrow \pi^+ \pi^-$  near  $\rho^0$  mass.
- Large feature near 1270  $MeV/c^2$ :  $f_2(1270)$  resonance

### UPC 2-pion invariant mass distribution



- Previous STAR fit includes:  $|\rho^0 + \omega + B_{\pi\pi}|^2$
- Where  $B_{\pi\pi}$  is the Drell-Söding process, modeled by a constant.
- The interference terms are very important to determine the shape.

To apply this to this analysis' mass range, we need to add two more resonances



Samuel Corev

## Including spin information

- Without spin information, nature of higher resonances is ambiguous.
- Examples:
  - *f*<sub>2</sub>(1270) vs. *ρ*(1450)
  - ρ(1700) ∨s. ρ<sub>3</sub>(1690)
- Including  $\Delta \phi$  information allows us to differentiate these.



#### Describing $(2\cos(n\Delta\phi))$ vs. $M_{\pi\pi}$

• Consider the UPC  $AA \rightarrow AA\pi^+\pi^-$  cross section as:

 $\propto |\rho^0 + \omega + f_2(1270) + \rho(1700) + B_{\pi\pi}|^2$ 

- Each cross term contributes to  $A_{n\Delta\phi} \equiv (2\cos(n\Delta\phi))$  according to the spin of the interfering states.
- Assume that each cross term contributes a constant value, and the observed  $A_{n\Delta\phi}$  is the average of these constants weighted by the contribution of that term to the total cross section.



#### Simultaneous Fit Procedure

• In this formulation, fit the invariant mass spectrum,  $A_{1\Delta\phi}$ ,  $A_{2\Delta\phi}$ , and  $A_{3\Delta\phi}$ .

$$\cdot \frac{d\sigma}{dM_{\pi\pi}} = \left| \frac{A_{\rho}\sqrt{M_{\pi\pi}M_{\rho}\Gamma_{\rho}}}{M_{\pi\pi}^{2}-M_{\rho}^{2}+iM_{\rho}\Gamma_{\rho}} + \frac{(A_{\omega}^{R}+iA_{\omega}^{I})\sqrt{M_{\pi\pi}M_{\omega}\Gamma_{\omega\to\pi^{+}\pi^{-}}}}{M_{\pi\pi}^{2}-M_{\omega}^{2}+iM_{\omega}\Gamma_{\omega}} + \frac{(A_{f_{2}}^{R}+iA_{f_{2}}^{I})\sqrt{M_{\pi\pi}M_{f_{2}}\Gamma_{f_{2}\to\pi^{+}\pi^{-}}}}{M_{\pi\pi}^{2}-M_{f_{2}}^{2}+iM_{f_{2}}\Gamma_{f_{2}}} + \frac{(A_{\rho(1700)}^{R}+iA_{\rho(1700)}^{I})\sqrt{M_{\pi\pi}M_{\rho(1700)}\Gamma_{\rho(1700)\to\pi^{+}\pi^{-}}}}{M_{\pi\pi}^{2}-M_{\rho(1700)}^{2}+iM_{\rho(1700)}\Gamma_{\rho(1700)\to\pi^{+}\pi^{-}}}} + B_{\pi\pi} \right|^{2}$$

$$\text{Where } \Gamma_{X} = \Gamma_{0,X} \frac{M_{X}}{M_{\pi\pi}} \left( \frac{M_{\pi\pi}^{2}-4m_{\pi}^{2}}{M_{X}^{2}-4m_{\pi}^{2}} \right)^{2j+1/2} \text{ and } \Gamma_{X\to\pi\pi} = Br(X\to\pi\pi)\Gamma_{X}$$

Orange: Relativisitic Breit-Wigner distributions. Blue: Drell-Söding process modeled as a constant.

Previous results use a function like this, but struggle to differentiate the heavier resonances.

#### Simultaneous Fit Procedure

• In this formulation, fit the invariant mass spectrum,  $A_{1\Delta\phi}$ ,  $A_{2\Delta\phi}$ , and  $A_{3\Delta\phi}$ .

• 
$$A_{1,3\Delta\phi} = \left(\frac{\rho \times f_2}{total} \times A_{1,3\Delta\phi}^{\rho \times f_2}\right) + \left(\frac{B_{\gamma A \to \pi\pi} \times f_2}{total} \times A_{1,3\Delta\phi}^{B_{\gamma A \to \pi\pi} \times f_2}\right)$$

• 
$$A_{2\Delta\phi} = \left(\frac{\rho^2}{total} \times A_{2\Delta\phi}^{\rho^2}\right) + \left(\frac{B_{\gamma A \to \pi\pi} \times \rho}{total} \times A_{2\Delta\phi}^{B_{\gamma A \to \pi\pi} \times \rho}\right) + \left(\frac{B_{\gamma A \to \pi\pi}^2 \times A_{2\Delta\phi}^{B_{\gamma A \to \pi\pi}}}{total} \times A_{2\Delta\phi}^{B_{\gamma A \to \pi\pi}^2}\right) + \left(\frac{\rho(1700) \times \rho}{total} \times A_{2\Delta\phi}^{\rho(1700) \times \rho}\right) + \left(\frac{B_{\gamma A \to \pi\pi} \times \rho(1700)}{total} \times A_{2\Delta\phi}^{B_{\gamma A \to \pi\pi} \times \rho(1700)}\right)$$

#### Simultaneous Fit: $dN/dM_{\pi\pi}$



# Invariant mass fit constrained by $A_{n\Delta\phi}$

19

#### Simultaneous Fit: $A_{1\Delta\phi}$



#### Simultaneous Fit: $A_{3\Delta\phi}$



#### Simultaneous Fit



22

#### Simultaneous Fit



23

#### Tabulated Results

#### This fit (STAR Preliminary)

$$\begin{split} M_{\rho} &= 760.4 \pm 0.16 \pm 11 \frac{MeV}{c^2} \\ \Gamma_{\rho} &= 142.0 \pm 0.25 \pm 14 \ MeV \\ M_{\omega} &= 782 \frac{MeV}{c^2} \ \text{(fixed)} \\ \Gamma_{\omega} &= 17 \ MeV \ \text{(fixed)} \end{split} \qquad \begin{split} M_{f_2(1270)} &= 1272.4 \pm 5.6 \pm 44 \frac{MeV}{c^2} \\ M_{f_2(1270)} &= 188.5 \pm 11.6 \pm 115 \ MeV \\ M_{\rho(1700)} &= 1737.3 \pm 17.3 \pm 71 \frac{MeV}{c^2} \\ \Gamma_{\rho(1700)} &= 248.0 \pm 34 \pm 13 \ MeV \end{split}$$

PDG mass, width:  $M_{f_2(1270)} = 1275.5 \pm 0.8 \frac{MeV}{c^2}$   $\Gamma_{f_2(1270)} = 185.9 \pm 2.5 MeV$   $M_{\rho(1700)} = 1720 \pm 20 \frac{MeV}{c^2}$  $\Gamma_{\rho(1700)} = 250 \pm 100 MeV$ 

 $\omega$  fixed to results from STAR, Phys. Rev. C 96, 054904 (2017)

Results reported as: value  $\pm$  statistical uncertainty  $\pm$  systematic uncertainty

- Spin interference parameters constrain on the mass and width of  $f_2(1270)$  and  $\rho(1700)$ .
  - Close agreement with PDG values for  $f_2(1270)$ .
  - $\rho(1700)$  width from this fit has smaller uncertainty than PDG (2022).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

#### Non-resonant $\gamma\gamma \rightarrow \pi^+\pi^-$

- Non-resonant  $\gamma\gamma \rightarrow \pi^+\pi^-$  not included in fit.
- Largest contribution to  $A_{1\Delta\phi}$  and  $A_{3\Delta\phi}$ around  $\rho^0$  mass.
- Excess in data compared to fit in this region as a result.



#### Conclusions

- $A_{1\Delta\phi}$  and  $A_{3\Delta\phi}$  were measured for the first time in STAR Au+Au UPCs at 200 GeV.
  - Spin interference between  $\gamma A \rightarrow \pi^+ \pi^-$  and  $\gamma \gamma \rightarrow \pi^+ \pi^-$ .
  - $A_{1\Delta\phi}$  and  $A_{3\Delta\phi}$  constrain  $\gamma\gamma \rightarrow \pi^+\pi^-$  cross section, phase (Hagiwara et al., Phys. Rev. D 103, 074013 (2021)).
  - $A_{1\Delta\phi}$  and  $A_{3\Delta\phi}$  feature at ~1270  $MeV/c^2$  indicates  $\gamma\gamma \rightarrow f_2(1270) \rightarrow \pi^+\pi^-$ .
- $A_{2\Delta\phi}$  as a function of  $M_{\pi\pi}$  was also measured in the same system for the first time.
- The  $A_{n\Delta\phi}$  and  $\frac{dN}{dM_{\pi\pi}}$  were fit simultaneously with a **new technique that** distinguishes resonances on  $\frac{dN}{dM_{\pi\pi}}$  according to their spin.
  - Extracted values of the mass and width of  $f_2(1270)$  and  $\rho(1700)$ .
  - Values of  $f_2(1270)$  consistent with known results **confirms**  $\gamma \gamma \rightarrow \pi^+ \pi^-$  in UPC.
  - Next step: extract  $d\sigma_{\gamma\gamma
    ightarrow\pi^+\pi^-}/dM_{\pi\pi}$

#### References

STAR, Phys. Rev. C 96, 054904 (2017)

First Results from Fermilab's Muon g-2 Experiment Strengthen Evidence of New Physics; Fermilab, 7 April 2021.

Danilkin, C. F. Redmer, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 107, 20 (2019).

Daniel Melo-Porras, Edilson Alfonso Reyes Rojas, Angelo Raffaele Fazio, Particles 2024, 7(2), 327 – 381

Brandenburg, Duan, Tu, Venugopalan, and Xu, Phys. Rev. Research 7, 013131 (2025)

STAR, Sci.Adv.9, eabq3903 (2023)

Hagiwara, Zhang, Zhou, and Zhou, Phys. Rev. D 103, 074013 (2021)