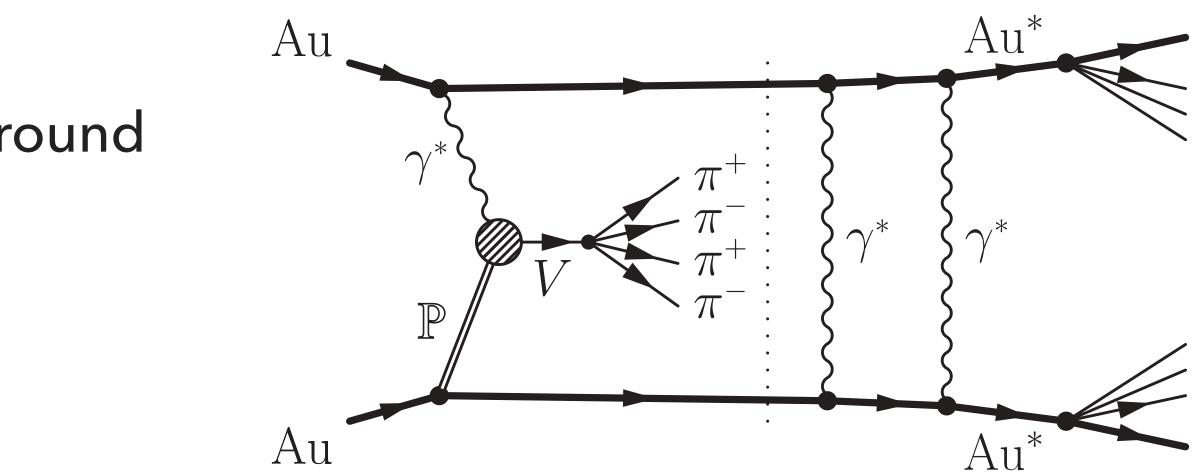
Supported in part by the

U.S. DEPARTMENT OF ENERGY Office of Science UNIVERSITY DAVID TLUSTY (CREIGHTON UNIVERSITY) FOR THE STAR COLLABORATION

OBSERVATION OF $\pi^+\pi^-\pi^+\pi^-$ AND $\pi^+\pi^-$ FINAL STATE PHOTO PRODUCTION IN UPC AT $\sqrt{S_{NN}} = 200 \text{ Get at the star detector}$

UPC 2025: The Second International Workshop on the Physics of Ultra Peripheral Collisions

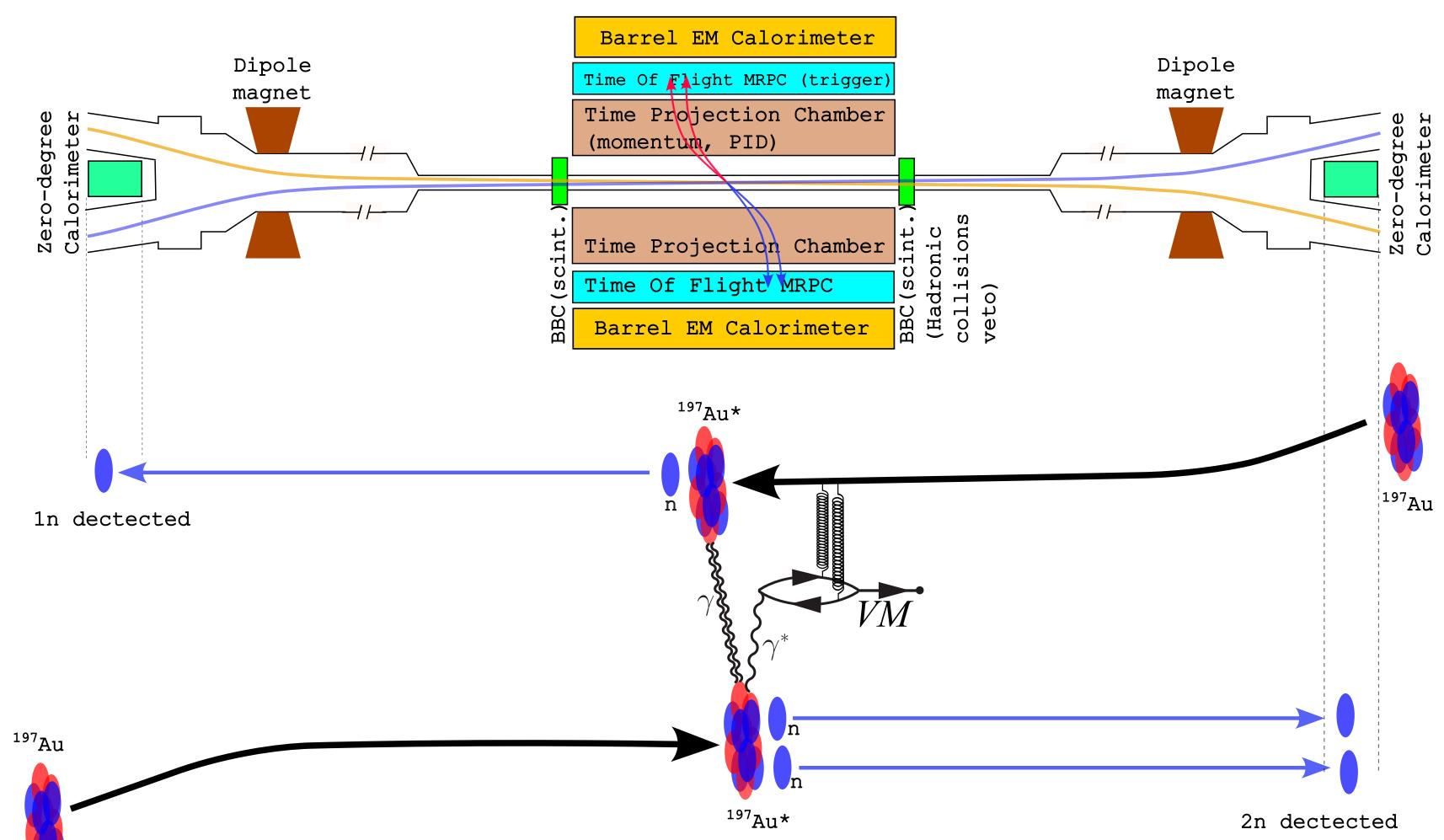
Creighton


MOTIVATION

- The first radial excitation $2^{3}S_{1}$ of ρ_{0} is considered to be the ρ_{1450} [PRD 110 030001], but decays suggest it is a hybrid state [PRD 56 1584]
- ρ₁₇₀₀ is assigned to 1³D₁ state there is need for precise measurement of mass and width to clarify its nature [PRD 110 030001]
- Questions of the ρ_{1450} relation to the ρ_{1700} have been raised
- The relativistic quark model [PRD 32 189] predicts 2³D¹ state J^{PC} = 1⁻⁻ at 2.15 GeV which can be identified with the ρ(2150)

UPC AS A GREAT PRODUCTION TOOL

- Heavy Ion Collisions large charge => large photon flux => large production cross section, accompanied by Coulomb excitation of the beam particles which emit neutrons => easy to trigger
- coherent (on nucleus) and incoherent (on nucleons)
- coherent photo production
 - final state is exclusive
 - easy to separate the signal from background



STAR EXPERIMENTAL SETUP (UPC RELEVANT DETECTORS ONLY)

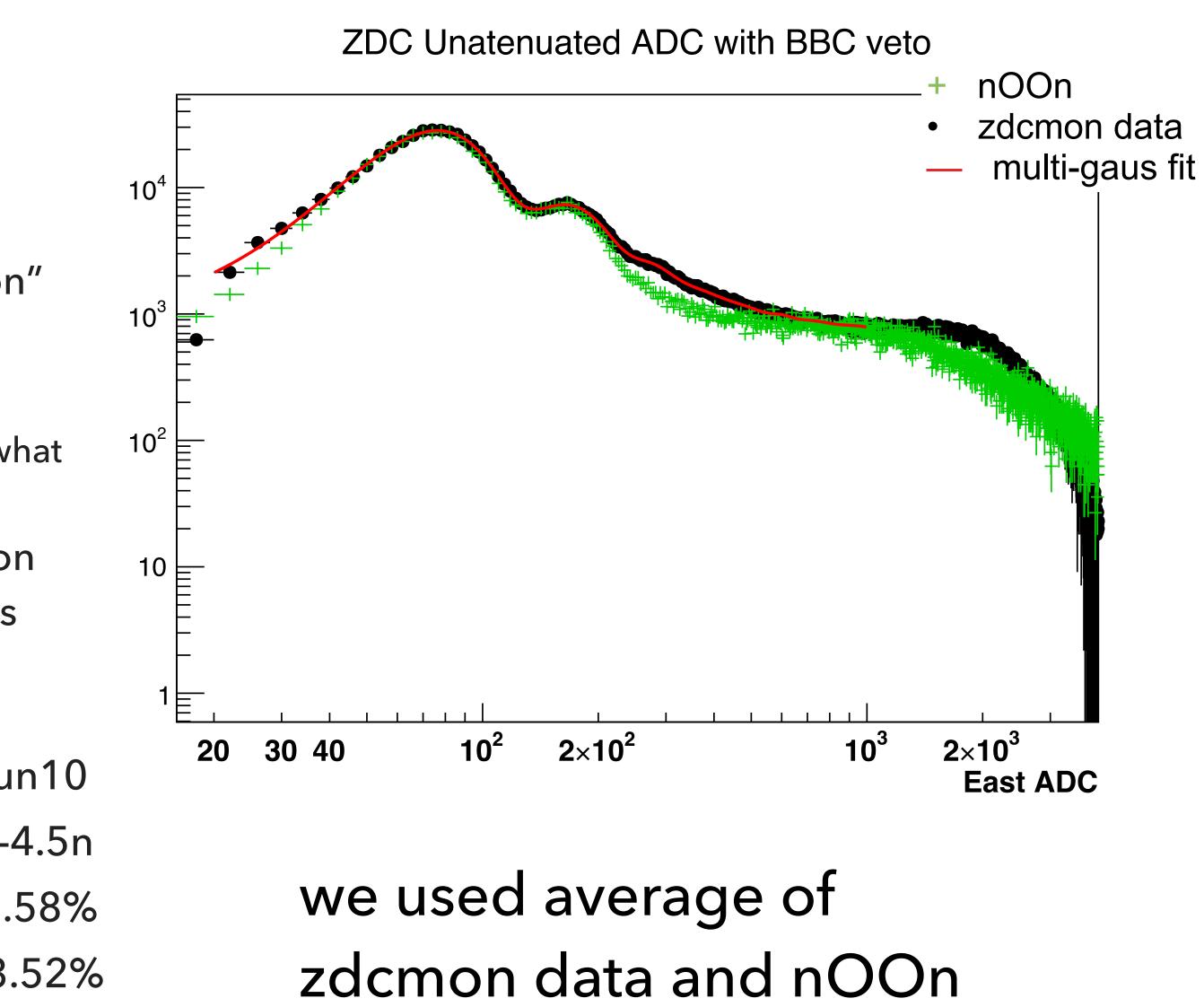
- Solenoidal Tracker At RHIC
- central rapidity coverage $(-1,1) \xrightarrow{2019} (-1.5,1.5)$
- neutron tagging
- charged hadrons PID
 - plus electron calorimetry including decay topology
- veto particles in the UPCs rapidity gap regions

ANALYSIS

DATASETS, LUMINOSITIES AND EVENT SELECTION

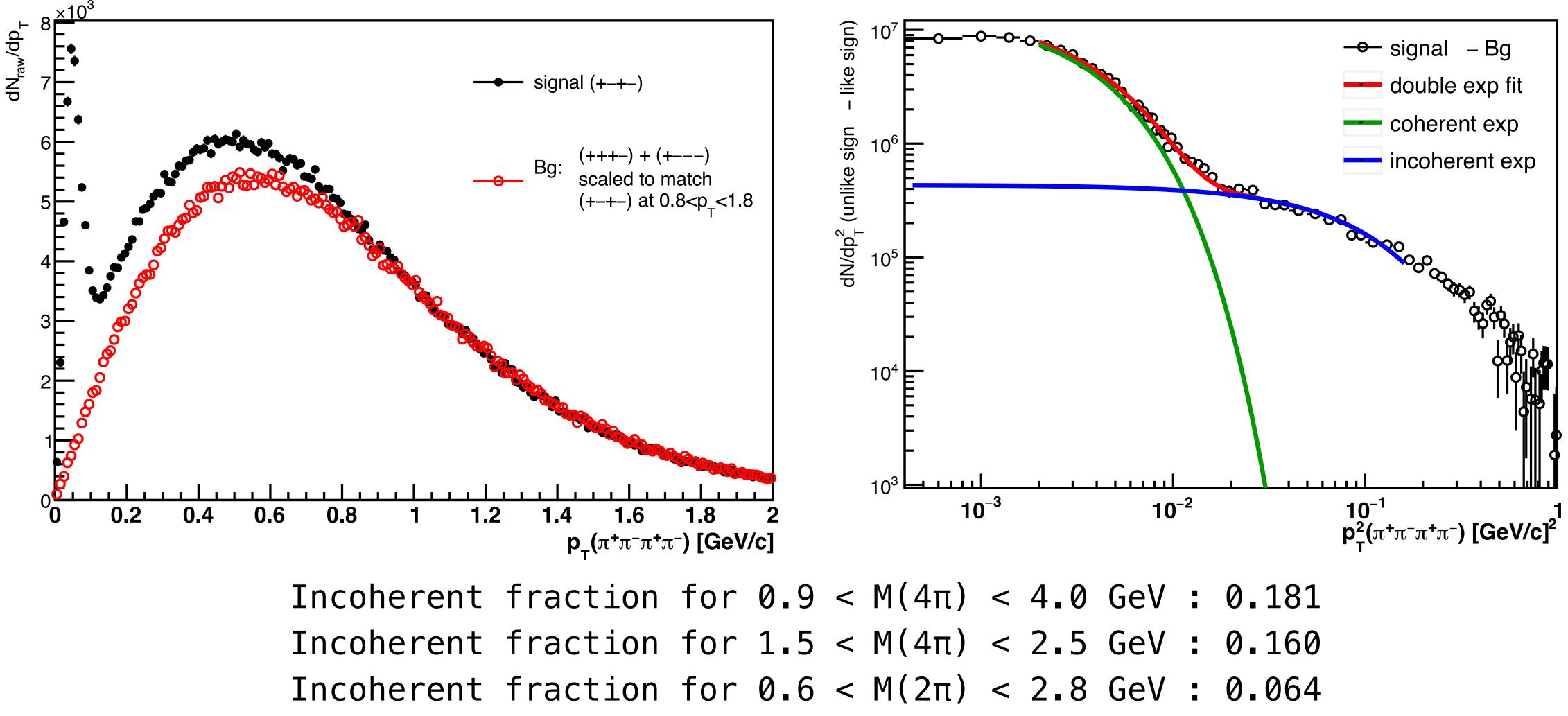
- Online Event Selection ("UPC_main" trigger)
 - number of neutrons on each side
 - ▶ 1 4.5 (Run 10)
 - ▶ 1 3.5 (Run 11)
 - ▶ 1 11 (Run 14)
 - ▶ $2 \leq \text{Track Multiplicity} \leq 6$
 - UPC Rapidity Gap Veto
- Offline Event Selection (analysis)
 - Z-Pos. of collision vertex | < 130 cm from acceptance</p> center
 - Track DCA to the vertex < 3cm</p>
 - For the provide the two terms of the provided terms of the terms of term
 - #TPC track hits > 15
 - ▶ $p_T(\pi^+\pi^-) < 0.15 \text{ GeV/c}$ or $p_T(\pi^+\pi^-\pi^+\pi^-) < 0.15 \text{ GeV/c}$

	Run14	Run11	Run1
L ⁻¹ [µb ⁻¹]	787	523	92
L ⁻¹ fraction in $ v_z < 130$	0.664	0.813	0.76

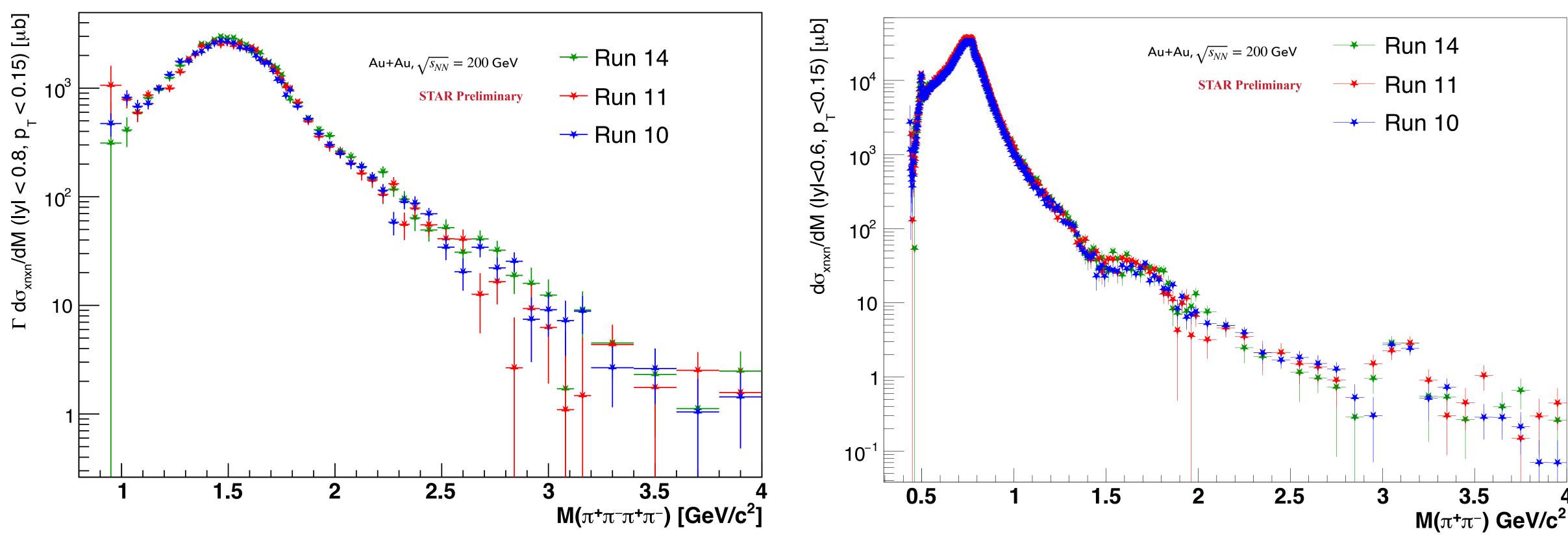


$\sigma_{\text{TRIGGER}} \rightarrow \sigma_{\text{NN}}$

- UPC_main trigger does not see whole σ_{nn}
- STAR added a special trigger in Run14 called "zdcmon" that was just ZDC coincidence (no cut on ADC, no hadron veto)
 - we analyzed these data and compare with UPC_main to what fraction of σnn the UPC_main trigger "see" in each year.
- nOOn model [CPC 253 107181] of neutron production can predict neutron distribution in heavy ion collisions


	Run14	Run11	Ru
UPC_main trigger	1-11n	1-3.5n	1-4
fraction from zdcmon data	56.74%	37.72%	41.
fraction from nOOn	63.16%	39.52%	43.

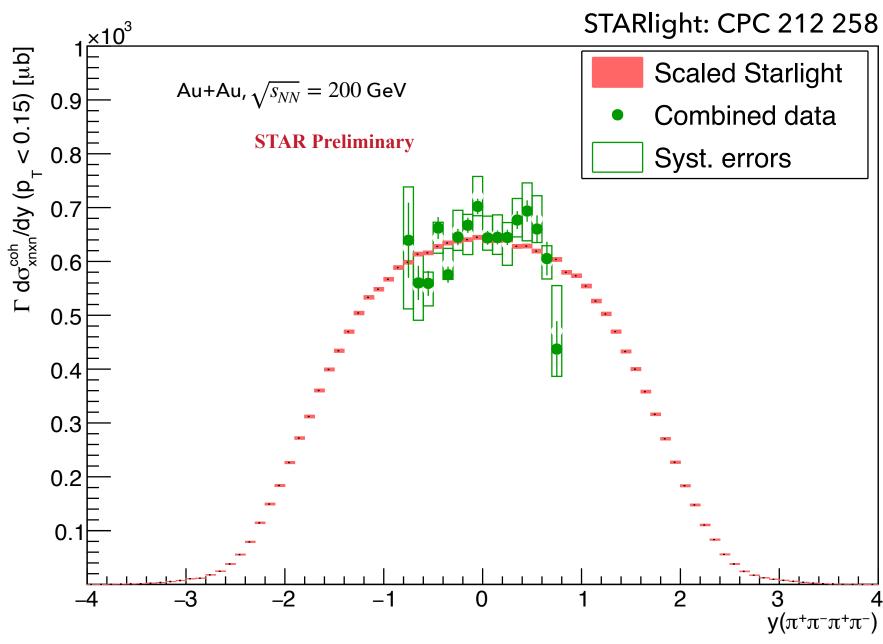
ANALYSIS


INCOHERENT CONTRIBUTION IN P_T<0.15 RANGE

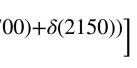
Incoherent fraction for $1.5 < M(2\pi) < 2.5$ GeV : 0.252

MASS SPECTRA OF $\pi^+\pi^-$ AND $\pi^+\pi^ \pi^+\pi^-$ (BOTH P_T < 0.15 GEV/C)

Main "sanity check" - cross section consistent between datasets

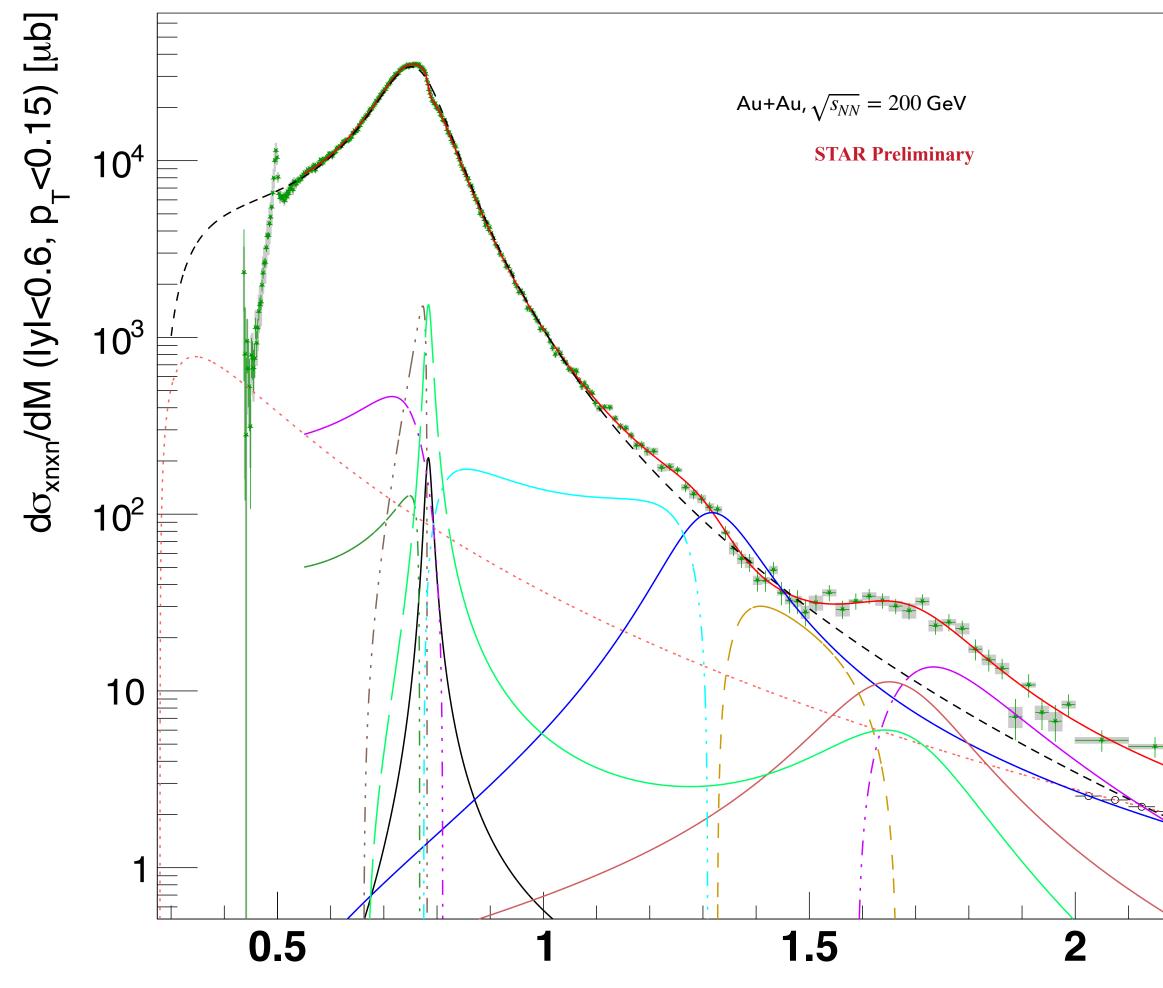

MASS($\pi^+\pi^-\pi^+\pi^-$) AND RAPIDITY COMBINED FROM ALL RUNS $\Gamma \frac{d\sigma}{dM} = A^2 \left| BW(\rho_{1450}) \right|^2 + B^2 \left| BW(\rho_{1700}) \right|^2 + C^2 \left| BW(\rho_{2150}) \right|^2 + 2\sqrt{AB} \Re \left[BW^*(\rho_{1450}) BW(\rho_{1700}) e^{i\delta(1700)} \right] + 2\sqrt{BC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(2150)} \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{2150}) e^{i\delta(1700)} + \delta(2150) \right] + 2\sqrt{AC} \Re \left[BW^*(\rho_{1450}) BW(\rho_{1450}) BW(\rho_{145$

Μ(π⁺π⁻π⁺π⁻) [GeV/c²]

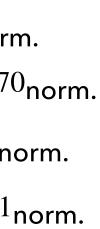

$$BW(\rho) = \left(\frac{M_{\rho}}{M}\right)^{\text{RSP}} \frac{\sqrt{WM_{\rho}}}{M^2 - M_{\rho}^2 + iM_{\rho}W}, \quad W = W_{\rho}\frac{M_{\rho}}{M} \left(\frac{M^2 - 16m_{\pi}^2}{M_{\rho}^2 - 16m_{\pi}^2}\right)^{3/2}$$
Fit to Data
 $\rho(1450)$
 $\rho(1700)$
 $\rho(1450)\rho(1700)$ if.
 $\rho(1450)\rho(2150)$ if.
 $\rho(1450)\rho(2150)$ if.
 $\rho(1700)\rho(2150)$ if.
Data
Syst. Errors
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 10^{4}
 $10^{$

PARAMETER	VALUE	ERROR
Mass ρ(1450)	1486	20.3
Width p(1450)	400.3	30
RSP1	2.17	0.27
Mass p(1700)	1701	15.4
Width p(1700)	399.6	34.5
RSP2	2.39	0.37
δ(1700)	1.22	0.38
Mass p(2150)	2247	91.2
Width p(2150)	570	fixed
RSP3	2.36	2.50
δ(2150)	0.50	0.48
Chi2/ndf 33.088	2/41	

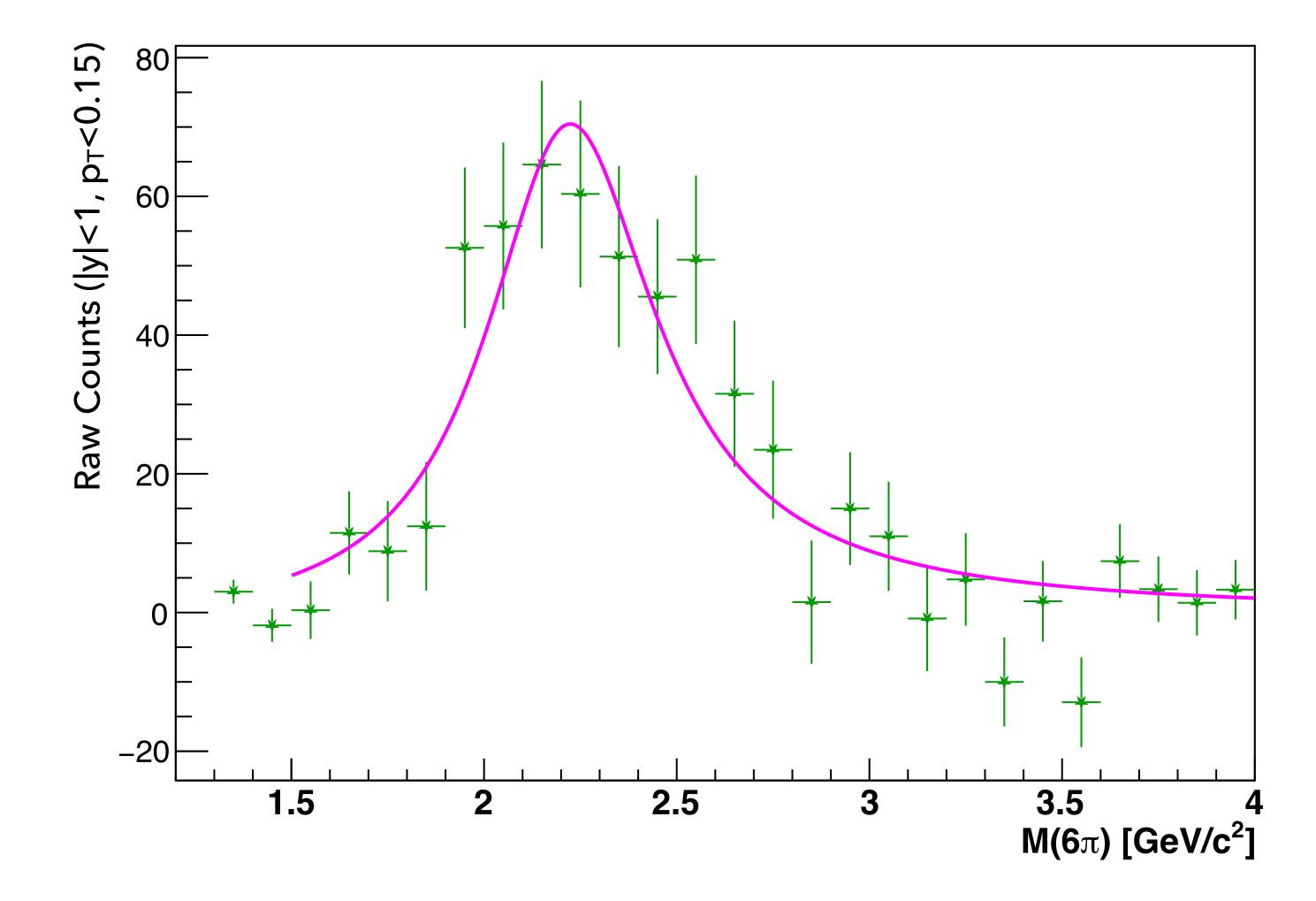
$$\begin{split} \sigma^{\mathsf{coh}}_{4\pi,xn,xn}(|y| < 0.8) &= 1348 \pm 16_{\mathsf{stat.}} \pm 20_{\mathsf{syst.}} \pm 162_{\mathsf{no}} \\ \sigma^{\mathsf{coh}}_{4\pi,xn,xn} &= 2941 \pm 34_{\mathsf{stat.}} \pm 45_{\mathsf{syst.}} \pm 352_{\mathsf{no}} \\ \Gamma \sigma^{\mathsf{coh}}_{\rho 1450,xn,xn}(|y| < 0.8) &= 426 \pm 162_{\mathsf{stat.}} \pm 202_{\mathsf{syst.}} \pm 51 \\ \Gamma \sigma^{\mathsf{coh}}_{\rho 1700,xn,xn}(|y| < 0.8) &= 310 \pm 148_{\mathsf{stat.}} \pm 169_{\mathsf{syst.}} \pm 37 \\ \Gamma \sigma^{\mathsf{coh}}_{\rho 2150,xn,xn}(|y| < 0.8) &= 8.9 \pm 6.1_{\mathsf{stat.}} \pm 1.3_{\mathsf{syst.}} \pm 1.1_{\mathsf{no}} \\ \mathsf{to extrapolate to full rapidity - multiply by 2.18} \end{split}$$



RESULTS


MASS OF $\pi^+\pi^-$ COMBINED FROM ALL

RUNS Data Data Syst. errors Fit to data ρ_0 ω ρ_0 ω if. residual bg f2(1270) $\rho(1700)$ ρ_0 f2(1270) i ρ_0 $\rho(1700)$	<pre>Mass Widt RSP Mass Widt O(ω) Mass Widt Mass Widt Mass Widt So(f2 So(170 Chi2) f. if. (1700) if f.</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.12 0.38 260 ST_{A} $\overline{VN} = 200 \text{ GeV}$ AR Preliminary	ERROR 0.30 0.57 0.02 0.02 0.02 0.50 0.17 19.63 38.30 22.71 46.75 0.18 0.18 0.18 0.18 Systematic Errors ARlight: CP
		$_{-2}^{0} = -1.5$ $_{-1}^{-1} = -0.5$ $_{0}^{-1}$	t. ± 70 _{syst.}	
2.5	$\sigma_{f2(1270),xn,xn}^{coh}(y <$	$ coh_{p0,xn,xn} = 26422 \pm 102_s $ $ < 0.6) = 25.4 \pm 14.7_{st} $	at. ± 12.8 sy	$/st. \pm 3.1$ no
Μ(π⁺π⁻) GeV/c²	$1 \sigma_{\rho(1700),xn,xn}(y <$	$< 0.6) = 3.43 \pm 1.05_{st}$	at. ± 1.47 sy	$/ st. \pm 0.41 nc$

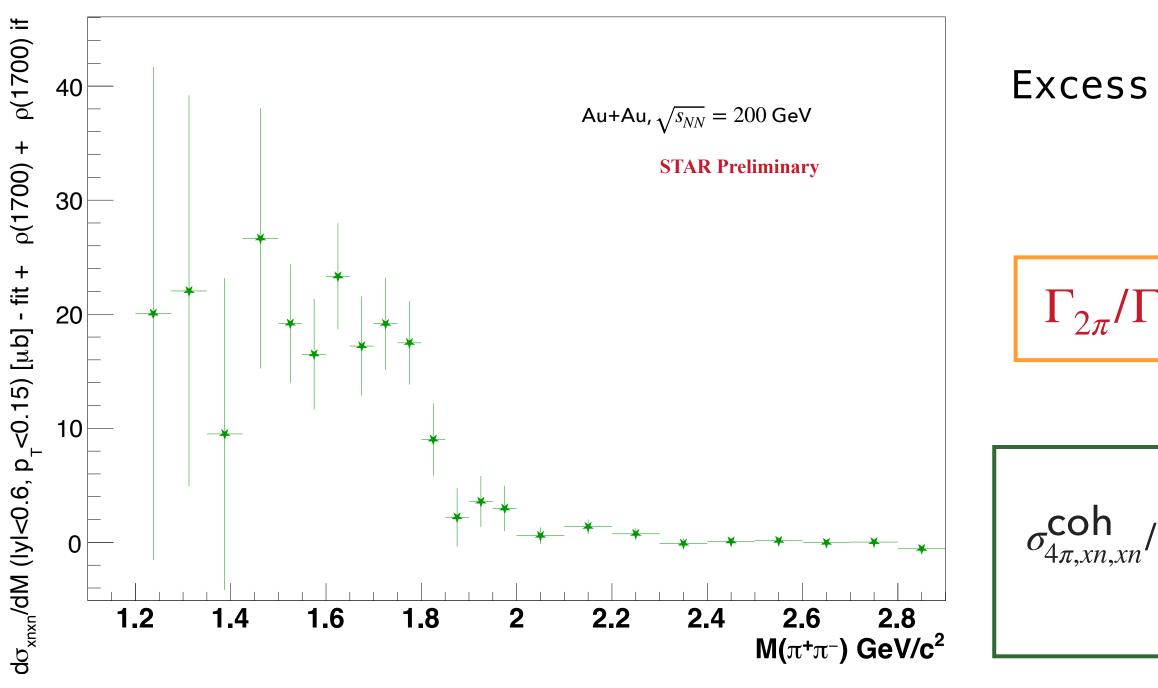


CPC 212 258

.

6π PHOTO PRODUCTION RESULTS

PARAMETER	VALUE	ERROR
Mass p(2150)	2276	57.8
Width p(2150)	573	84.5
RSP ρ(2150)	0.82	0.42
Chi2/ndf 27.99	46/21	



11

RESULTS

RATIO OF THE BRANCHING FRACTIONS OF THE RH01700 TO 2PI AND 4PI

- comparison of yields directly from Breit-Wigner functions
 - $\Gamma_{2\pi}\sigma_{\rho 1700,xn,xn}^{\text{coh}} = 4.53 \pm 1.38_{\text{stat.}} \pm 1.93_{\text{syst.}}$ in |y|<0.8 from π^+
 - $\Gamma_{4\pi}\sigma_{\rho 1700,xn,xn}^{\text{coh}} = 328 \pm 161_{\text{stat.}} \pm 178_{\text{syst.}}$ in |y|<0.8 from $\pi^+\pi$
 - to 2.5 GeV/c² a good proxy for ρ_{1700}

$$\Gamma_{2\pi}^{-}/\Gamma_{4\pi}(\rho_{1700}) = 1.38 \pm 0.80_{\text{stat.}} \pm 0.95_{\text{syst}}$$

> an alternative method using an excessive yield in $\pi^+\pi^-$ and yield in $\pi^+\pi^-\pi^+\pi^-$ in the mass window from 1.5

• the excessive yield in $\pi^+\pi^-$ can be calculated as $\pi^+\pi^-$ data – components of the fit function excluding ρ_{1700} Breit-Wigner and its interference

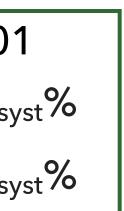
in 1.5 < Mass < 2.5
$$|y| < 0.8 = 6.72 \pm 0.61_{stat} \pm 0.33_{stat}$$

 $\sigma_{4\pi,xn,xn}^{coh}(|y| < 0.8, 1.5 < M < 2.5) = 612 \pm 8_{stat} \pm 17_{syst}.$

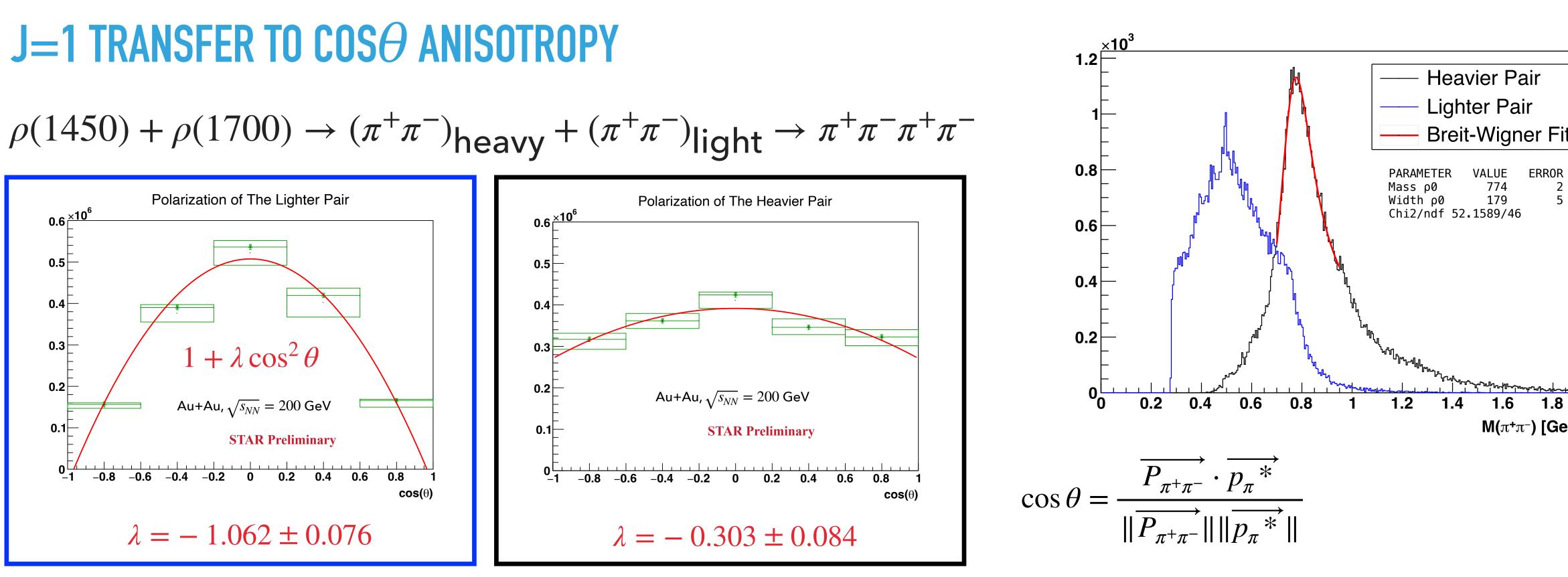
 $\Gamma_{2\pi}/\Gamma_{4\pi}(|y| < 0.8, 1.5 < M < 2.5) = 1.10 \pm 0.10_{\text{stat.}} \pm 0.06_{\text{syst.}}\%$

$$PRC 81 04490$$

$$\sigma_{\rho 0,xn,xn}^{coh}(|y| < 0.8) = 14.1 \pm 0.4_{stat.} \pm 0.5_{sys.}\%$$


$$16.4 \pm 1.0_{stat} \pm 5.2_{s}$$

$$\sigma_{4\pi,xn,xn}^{coh}/\sigma_{\rho 0,xn,xn}^{coh} = 11.1 \pm 0.3_{stat.} \pm 0.4_{sys.}\%$$


$$13.4 \pm 0.8_{stat} \pm 4.4_{s}$$

$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ POLARIZATION

- Breit-Wigner fit to the heavier pair mass point to ρ_0 meson.
- Heavy pair polarized, but not fully
- meson while its polarization indicates vector meson.

 \blacktriangleright Light pair likely contains f₀(500) resonance. But this resonance is supposed to be a scalar

	1	3
t		
ttu	∽-h-	~
eV/	'n	2 ² 1

SUMMARY

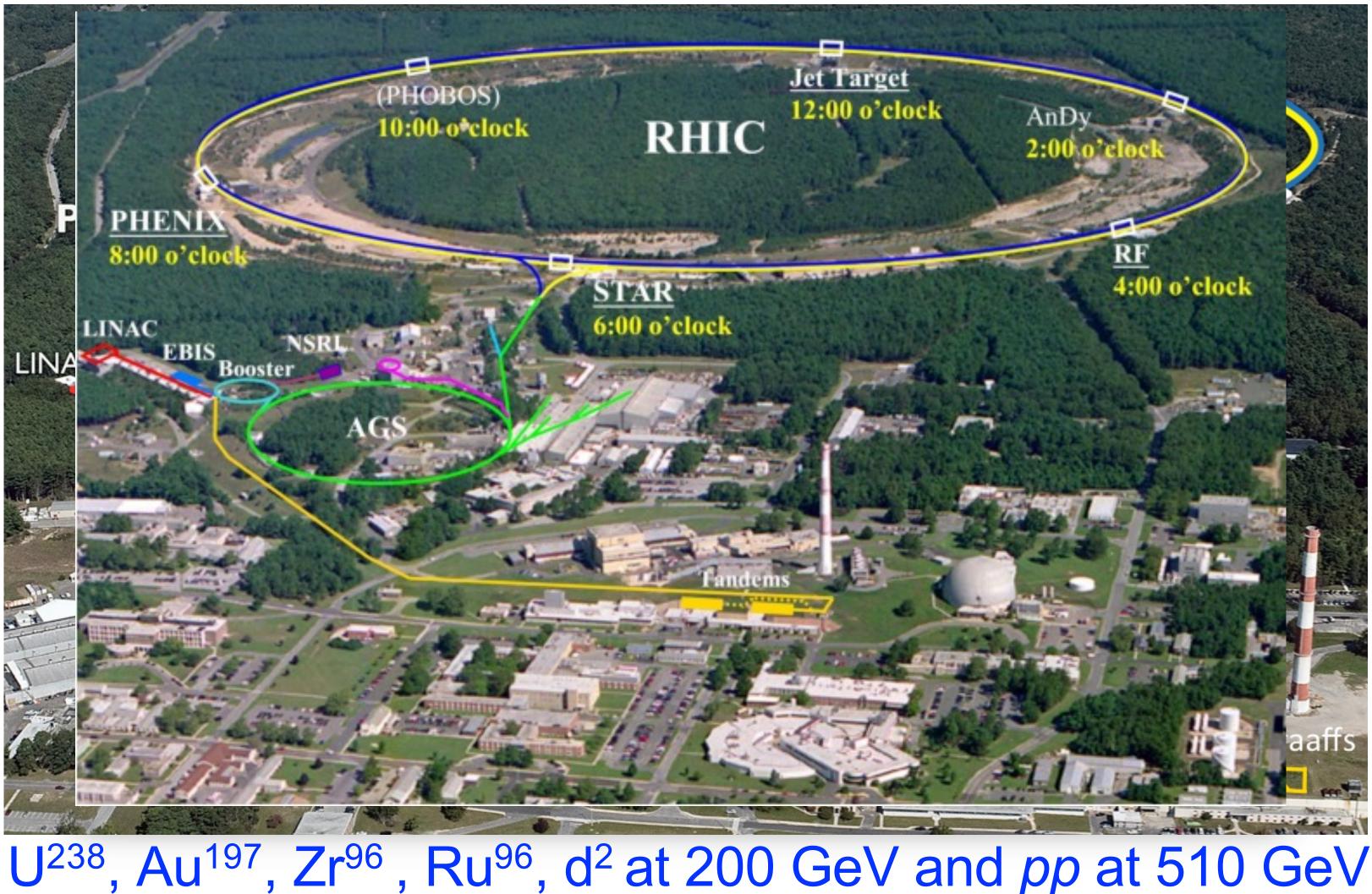
- √s_{NN}=200 GeV
 - ρ_{1450} (2³S₁), ρ_{1700} (1³D₁) clearly and ρ_{2150} (2³D₁) likely observed in $\pi^+\pi^-\pi^+\pi^-$ mass spectrum
 - p₁₄₅₀ mass and width consistent with the world average
 - f2(1250) and ρ_{1700} observed in $\pi^+\pi^-$ mass spectrum
 - f2(1250) mass larger might contain ρ_{1450} , but we can't separate these states
 - ρ_{2150} (2³D₁) observed in $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ mass spectrum first time at STAR
 - $(\rho_{1700} \rightarrow \pi^+ \pi^-)/(\rho_{1700} \rightarrow \pi^+ \pi^- \pi^+ \pi^-) = 1.10 \pm 0.10_{\text{stat.}} \pm 0.06_{\text{syst.}} \%$ in mid rapidity and
 - $\sigma_{4\pi,xn,xn}^{coh} / \sigma_{o0,xn,xn}^{coh} = 14.1 \pm 0.4_{stat.} \pm 0.5_{sys.} \%$ in mid and $11.1 \pm 0.3_{stat.} \pm 0.4_{sys.} \%$ in full rapidity
- $\pi^+\pi^-\pi^+\pi^-$ states' (all supposed to have J=1) decay can be separated to 2 $\pi^+\pi^-$ pairs by their mass
 - the lighter pair which likely contains f0(500), a scalar meson, decays like fully polarized particle ($\lambda = -1$)
 - the heavier pair whose mass spectrum resembles ρ_0 is partially polarized ($\lambda = -0.3$)

STAR presented a precise measurement of $\pi^+\pi^-\pi^+\pi^-$ and $\pi^+\pi^-$ photo-production in Au+Au collisions at

 ρ_{1700} mass consistent with the world average, but width larger => more decays modes possible, hybrid state indication?

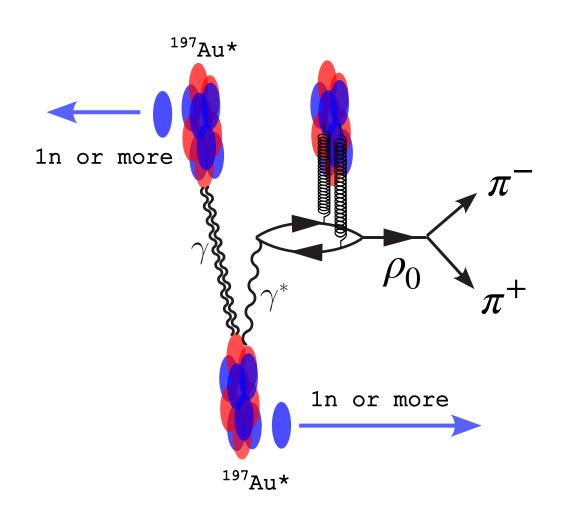
 ρ_{1700} mass and width consistent with the world average, width lower than in $\pi^+\pi^-\pi^+\pi^- =>$ existence of intermediate states in decay

BACKUP SLIDES

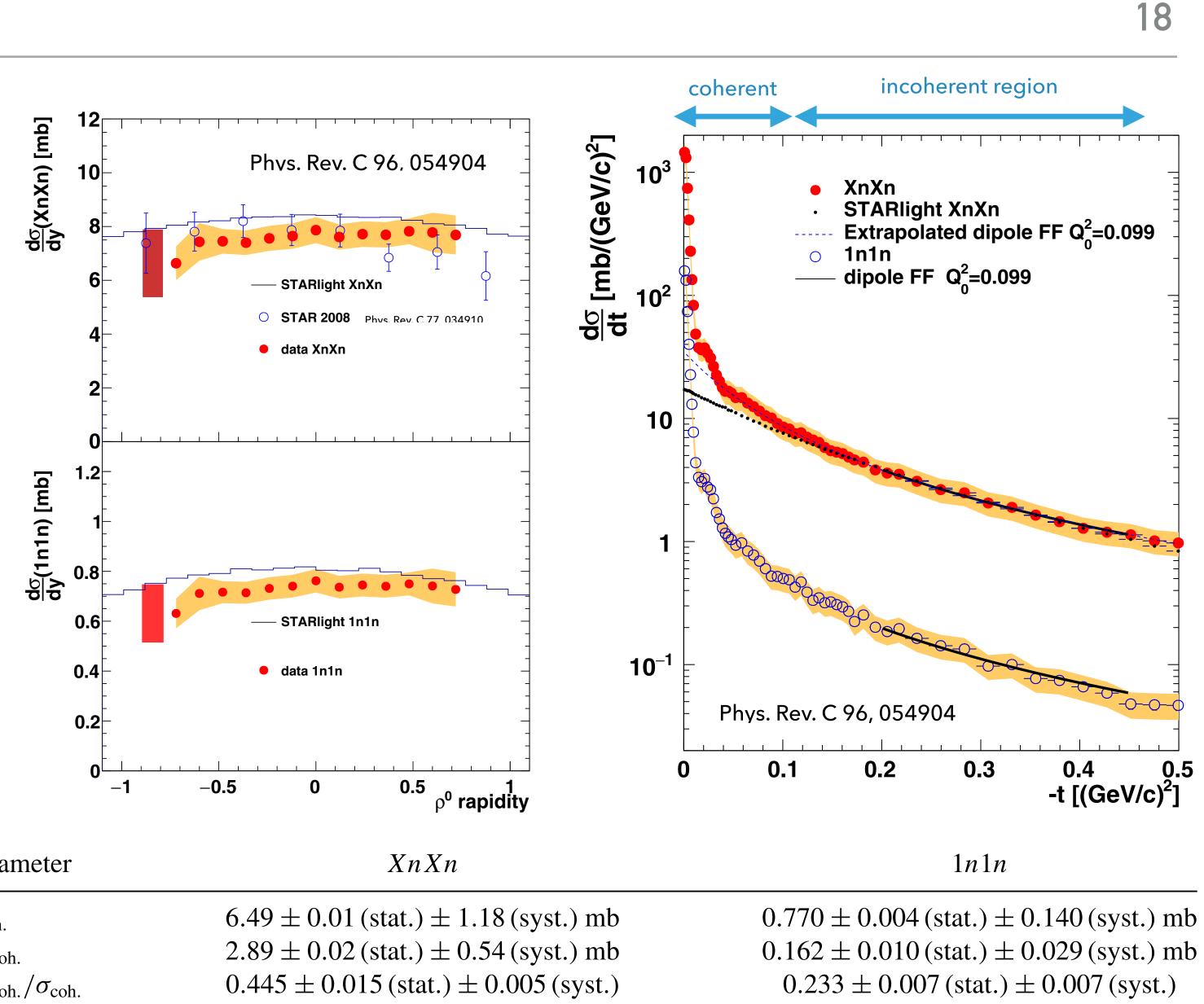


EXPERIMENT

UTRA-PERIPHERAL COLLISIONS AT RHIC

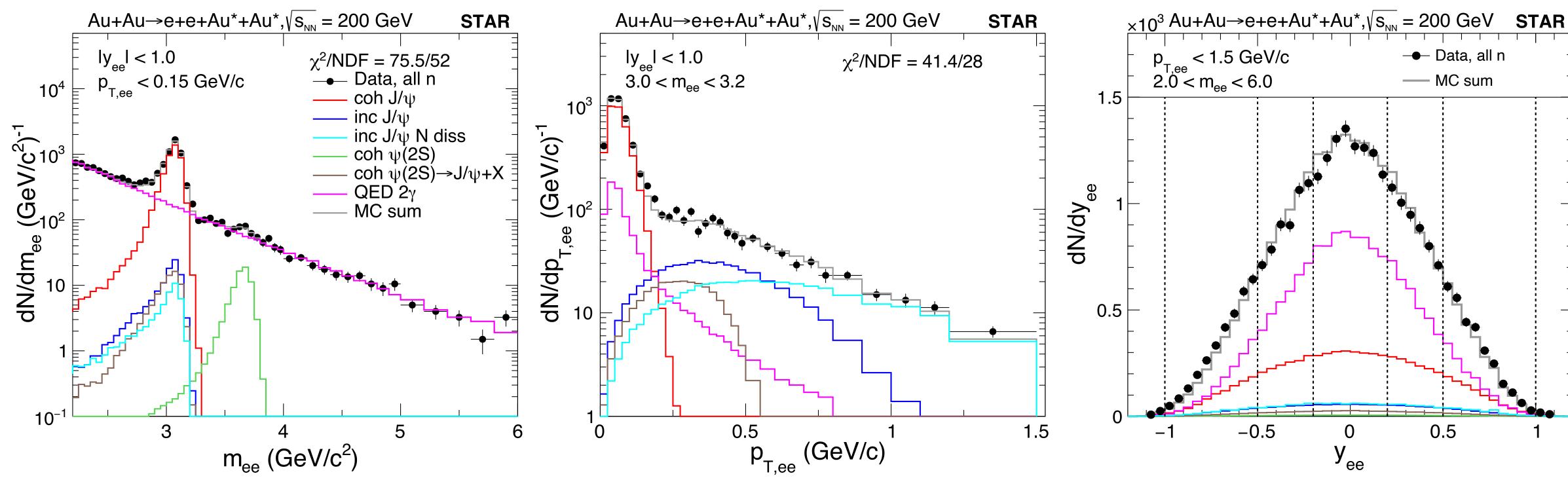

Relativistic Heavy Ion Collider located in ven National La (Long Island, USA) anffequasisreal photon energy, and proton olarization

sions that don't "collide"

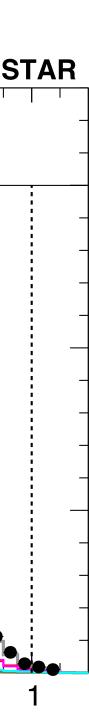


ρ_0 CROSS SECTION

- integrated luminosity of 1100±100 µb–1 of data collected in 2010
- XnXn extrapolated from 1n1n using STARlight
- incoherent components in $d\sigma/dt$ are fit in range -t = (0.2, 0.45)
 - σ_{incoh} are integrals of the fits


Parameter

$\sigma_{ m coh.}$	
$\sigma_{ m incoh.}$	
$\sigma_{\rm incoh.}/\sigma_{\rm coh.}$	



Nuclear excitation and ρ_0 photo production are not completely independent

J/ψ Photoproduction in AU+AU UPC EVENTS AT 200 GEV

• when $Q^2 \sim 0$, p_T of J/ψ is directly related to momentum transfer ($t \sim p_T^2$)

