Supported in part by the

U.S. DEPARTMENT OF ENERGY Office of Science UNIVERSITY DAVID TLUSTY (CREIGHTON UNIVERSITY) FOR THE STAR COLLABORATION

OBSERVATION OF $\pi^+\pi^-\pi^+\pi^-$ AND $\pi^+\pi^-$ FINAL STATE PHOTO PRODUCTION IN UPC AT $\sqrt{S_{NN}} = 200 \text{ GeV at the star detector}$

UPC 2025: The Second International Workshop on the Physics of Ultra Peripheral Collisions

Creighton

MOTIVATION

- The first radial excitation $2^{3}S_{1}$ of ρ_{0} is considered to be the ρ_{1450} [PRD 110 030001], but decays suggest it is a hybrid state [PRD 56 1584]
- ρ₁₇₀₀ is assigned to 1³D₁ state there is need for precise measurement of mass and width to clarify its nature [PDG - PRD 110 030001]
- Questions of the ρ_{1450} relation to the ρ_{1700} have been raised
- The relativistic quark model [PRD 32 189] predicts $2^{3}D_{1}$ state J^{PC} = 1⁻⁻ at 2.15 GeV which can be identified with the $\rho(2150)$

UPC AS A GREAT PRODUCTION TOOL

- Heavy Ion Collisions large charge => large photon flux => large production cross section, accompanied by Coulomb excitation of the beam particles which emit neutrons => easy to trigger
- coherent (on nucleus) and incoherent (on nucleons)
- coherent photo production
 - final state is exclusive
 - easy to separate the signal from background

STAR EXPERIMENTAL SETUP (UPC RELEVANT DETECTORS ONLY)

- Solenoidal Tracker At RHIC
- central rapidity coverage $(-1,1) \xrightarrow{2019} (-1.5,1.5)$
- neutron tagging
- charged hadrons PID
 - plus electron calorimetry including decay topology
- veto particles in the UPCs rapidity gap regions

ANALYSIS

DATASETS, LUMINOSITIES AND EVENT SELECTION

- Online Event Selection ("UPC_main" trigger)
 - number of neutrons on each side
 - ▶ 1 4.5 (Run 10)
 - ▶ 1 3.5 (Run 11)
 - ▶ 1 11 (Run 14)
 - ▶ $2 \leq \text{Track Multiplicity} \leq 6$
 - UPC Rapidity Gap Veto
- Offline Event Selection (analysis)
 - Z-Pos. of collision vertex | < 130 cm from acceptance</p> center
 - Track DCA to the vertex < 3cm</p>
 - For the provide the two terms of the provided terms of the terms of the provided terms of the terms of terms of
 - #TPC track hits > 15 of 45
 - > $p_T(\pi^+\pi^-) < 0.15 \text{ GeV/c}$ or $p_T(\pi^+\pi^-\pi^+\pi^-) < 0.15 \text{ GeV/c}$

				Run14	Run11	Run
L-1	[µb-1]			787	523	92
L-1	fraction	in	v _z <130	0.664	0.813	0.76

$\sigma_{\text{TRIGGER}} \rightarrow \sigma_{\text{NN}}.$

- UPC_main trigger does not see whole σ_{nn}
- STAR added a special trigger in Run14 called "zdcmon" that was just ZDC coincidence (no cut on ADC, no hadron veto)
 - we analyzed these data and compared with UPC_main to what fraction of σ_{nn} the UPC_main trigger "see" in each year.
- nOOn model [CPC 253 107181] of neutron production can predict neutron distribution in heavy ion collisions

	Run14	Run11	Ru
UPC_main trigger	1-11n	1-3.5n	1-
fraction from zdcmon data	56.74%	37.72%	41.
fraction from nOOn	63.16%	39.52%	43

ANALYSIS

INCOHERENT CONTRIBUTION IN $P_T < 0.15$ RANGE

fit function =
$$f_{coh} + f_{incoh}$$

 $f_{coh} = \exp(a + bp_T^2)$
 $f_{incoh} = \frac{c}{d(1 + p_T^2/d)^2}$ (dipole form factor)

Incoherent fraction for $0.9 < M(4\pi) < 4.0$ GeV : (18.7 ± 1.2)% Incoherent fraction for $1.5 < M(4\pi) < 2.5$ GeV : (16.1 ± 1.3)% Incoherent fraction for $0.6 < M(2\pi) < 2.8 \text{ GeV}$: (8.35 ± 0.52) % Incoherent fraction for $1.5 < M(2\pi) < 2.5 \text{ GeV}$: (26.8 ± 0.8)%

MASS SPECTRA OF $\pi^+\pi^-$ AND $\pi^+\pi^ \pi^+\pi^-$ (BOTH P_T < 0.15 GEV/C)

Main "sanity check" - cross section consistent between datasets

PARAMETER	VALUE	ERROR	PDG
Mass ρ(1450)	1486	20.3	1465± 25
Width $\rho(1450)$	400.3	30	400± 60
RSP1	2.17	0.27	
Mass ρ(1700)	1701	15.4	1720± 20
Width $\rho(1700)$	399.6	34.5	250±100
RSP2	2.39	0.37	
δ(1700)	1.22	0.38	
Mass p(2150)	2247	91.2	
Width $\rho(2150)$	570	fixed	
RSP3	2.36	2.50	
δ(2150)	0.50	0.48	
Chi2/ndf 33.0882/41			[PDG - PRD 110 030001]

STARlight: CPC 212 258 0.15) [µb] Scaled Starlight Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ 0.9 Combined data **STAR Preliminary** 0.8 Syst. errors V $d\sigma_{xnxn}^{coh}/dy (p_T$ 0.5 0.4 0.3 0.2 0.1 -2 $\sigma_{4\pi,xn,xn}^{\text{coh}}(|y| < 0.8) = 1336 \pm 15_{\text{stat.}} \pm 26_{\text{syst.}} \pm 160_{\text{norm.}}$ $\Gamma \sigma_{\rho 1450,xn,xn}^{\text{coh}}(|y| < 0.8) = 450 \pm 172_{\text{stat.}} \pm 214_{\text{syst.}} \pm 54_{\text{norm.}}$ $\Gamma \sigma_{\rho 1700,xn,xn}^{\text{coh}}(|y| < 0.8) = 325 \pm 160_{\text{stat.}} \pm 170_{\text{syst.}} \pm 39_{\text{norm.}}$ $\Gamma \sigma_{\rho 2150,xn,xn}^{\text{coh}}(|y| < 0.8) = 9.3 \pm 7.7_{\text{stat.}} \pm 2.4_{\text{syst.}} \pm 1.1_{\text{norm.}}$

to extrapolate to full rapidity - multiply by 2.18

MASS OF $\pi^+\pi^-$ COMBINED FROM ALL RUNS


```
ERROR
                                   PARAMETER
                                                           VALUE
                                                         774.83
                                                                         0.30
                                                                                     775.26±0.23
                                  Mass po
                                   Width \rho_0
                                                         146.39
                                                                         0.57
                                                                                     147.40±0.80
                                                            2.76
                                                                         0.02
                                   RSP ρ<sub>0</sub>
           Data
                                                          783.82
                                                                          0.50
                                                                                     782.66±0.13
                                   Mass \omega
                                                           16.13
                                                                          0.85
                                                                                        8.68±0.13
                                   Width \omega
           Syst. errors
                                   δ(ω)
                                                             1.97
                                                                          0.17
           Fit to data
                                                        1339.26
                                                                        19.63
                                   Mass f_2
                                                                                      1275.4±0.8
                                                         210.35
                                                                        38.30
                                   Width f_2
                                                                                       185.8±2.8
           ρ
                                                        1700.65
                                                                        22.71
                                                                                       1720 \pm 20
                                   Mass ρ<sub>1700</sub>.
                                                                        46.75
                                                         317.79
                                   Width \rho_{1700}
                                                                                       250 \pm 100
           ω
                                   \delta(f_2)
                                                                         0.18
                                                            3.12
                                                                                       [PDG - PRD 110 030001]
          \rho_0 \omega if.
                                                            0.38
                                                                         0.18
                                   δ(ρ<sub>1700</sub>)
           residual bg
                                   Chi2/ndf=282.248/260
     --- f<sub>2</sub>(1270)
           ρ<sub>1700</sub>
           \rho_0 f_2(1270) if.
          \rho_0 = \rho(1700) if.
          f_2(1270) \rho_{1700} if.
          ω f<sub>2</sub>(1270) if.
           ω ρ_{1700} if.
           scaled e<sup>+</sup>e<sup>-</sup>
           [PRC 110 14911]
        2.5
Μ(π<sup>+</sup>π<sup>-</sup>) GeV/c<sup>2</sup>
```


6π PHOTO PRODUCTION RESULTS

PARAMETER	VALUE	ERROR
Mass p(2150)	2276	57.8
Width p(2150)	573	84.5
RSP ρ(2150)	0.82	0.42
Chi2/ndf 27.99	46/21	

Resonance with consistent

mass and width in 4π

Could be p(2150)

11

RATIO OF THE BRANCHING FRACTIONS OF THE ρ_{1700} TO 2π AND 4π

comparison of yields directly from Breit-Wigner functions

- $\Gamma_{2\pi}\sigma_{\rho 1700,xn,xn}^{\text{coh}} = 4.42 \pm 1.34_{\text{stat.}} \pm 1.67_{\text{syst.}}$ in |y|<0.8 from π^{-1}
- $\Gamma_{4\pi}\sigma_{\rho 1700,xn,xn}^{\text{coh}} = 325 \pm 160_{\text{stat.}} \pm 170_{\text{syst.}}$ in |y|<0.8 from π^+
- to 2.5 GeV/c² a good proxy for ρ_{1700}

s

$$^{+\pi^{-}}_{\pi^{-}\pi^{+}\pi^{-}}$$
 $\Gamma_{2\pi}/\Gamma_{4\pi}(\rho_{1700}) = 1.36 \pm 0.79$ stat. ± 0.88 syst.

> an alternative method using an excess yield in $\pi^+\pi^-$ and yield in $\pi^+\pi^-\pi^+\pi^-$ in the mass window from 1.5

• the excess yield in $\pi^+\pi^-$ can be calculated as $\pi^+\pi^-$ data – components of the fit function excluding ρ_{1700} Breit-Wigner and its interference

in 1.5 < Mass < 2.5
$$|y| < 0.8 = 6.56 \pm 0.60_{stat} \pm 0.32_{stat}$$

 $\sigma_{4\pi,xn,xn}^{coh}(|y| < 0.8, 1.5 < M < 2.5) = 612 \pm 8_{stat} \pm 21_{syst}.$

 $\Gamma_{2\pi}/\Gamma_{4\pi}(|y| < 0.8, 1.5 < M < 2.5) = 1.07 \pm 0.10_{\text{stat.}} \pm 0.06_{\text{syst.}}\%$

$$PRC 81 04490$$

$$\sigma_{\rho 0,xn,xn}^{coh}(|y| < 0.8) = 14.1 \pm 0.4_{stat.} \pm 0.5_{sys.}\%$$

$$16.4 \pm 1.0_{stat} \pm 5.2_{s}$$

$$\sigma_{4\pi,xn,xn}^{coh}/\sigma_{\rho 0,xn,xn}^{coh} = 11.1 \pm 0.3_{stat.} \pm 0.4_{sys.}\%$$

$$13.4 \pm 0.8_{stat} \pm 4.4_{s}$$

$\pi^+\pi^-\pi^+\pi^-$ POLARIZATION

- Breit-Wigner fit to the heavier pair mass point to ρ_0 meson.
- Heavy pair polarized, but not fully
- meson while its polarization indicates vector meson.

 \blacktriangleright Light pair likely contains f₀(500) resonance. But this resonance is supposed to be a scalar

	1	3
t		
ttu	∽-h-	~
∕.√د	'n	2 21

SUMMARY

- √s_{NN}=200 GeV
 - ρ_{1450} (2³S₁), ρ_{1700} (1³D₁) clearly and ρ_{2150} (2³D₁) likely observed in $\pi^+\pi^-\pi^+\pi^-$ mass spectrum
 - ρ_{1450} mass and width consistent with the world average
 - $f_2(1270)$ and ρ_{1700} observed in $\pi^+\pi^-$ mass spectrum
 - $f_2(1270)$ mass larger might contain ρ_{1450} , but we can't separate these states
 - resonance indicating ρ_{2150} (2³D₁) observed in $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ mass spectrum first time at STAR
 - $(\rho_{1700} \rightarrow \pi^+ \pi^-)/(\rho_{1700} \rightarrow \pi^+ \pi^- \pi^+ \pi^-) = 1.07 \pm 0.10_{\text{stat.}} \pm 0.06_{\text{syst.}} \%$ in mid rapidity and
 - $\sigma_{4\pi,xn,xn}^{\text{coh}} / \sigma_{o0,xn,xn}^{\text{coh}} = 14.1 \pm 0.4_{\text{stat.}} \pm 0.5_{\text{sys.}} \%$ in mid and $11.1 \pm 0.3_{\text{stat.}} \pm 0.4_{\text{sys.}} \%$ in full rapidity
- - the lighter pair which likely contains $f_0(500)$, a scalar meson, decays like fully polarized particle ($\lambda = -1$)
 - the heavier pair whose mass spectrum resembles ρ_0 is partially polarized ($\lambda = -0.3$)

STAR presented a precise measurement of $\pi^+\pi^-\pi^+\pi^-$ and $\pi^+\pi^-$ photo-production in Au+Au collisions at

 ρ_{1700} mass consistent with the world average, but width larger => more decays modes possible, hybrid state indication?

 ρ_{1700} mass and width consistent with the world average, width lower than in $\pi^+\pi^-\pi^+\pi^- =>$ existence of intermediate states in decay $\pi^+\pi^-\pi^+\pi^-$ states' (all supposed to have J=1) decay can be separated to 2 $\pi^+\pi^-$ pairs by their mass

BACKUP SLIDES

$$\frac{d\sigma}{dM} = \sigma_1 \left| BW_1 \right|^2 + \sigma_2 \left| BW_2 \right|^2 + 2\sqrt{\sigma_1 \sigma_2} \Re \left[BW_1^* BW_2 e^{i\phi} \right] \qquad BW(\rho) \equiv \left(\frac{M_\rho}{M} \right)^n \frac{\sqrt{\Gamma_\rho M_\rho}}{M^2 - M_\rho^2 + iM_\rho \Gamma_\rho}$$

$$|BW_{1}|^{2} = BW_{1}BW_{1}^{*} = \left(\frac{M_{1}}{M}\right)^{2n} \frac{\Gamma_{1}M_{1}}{(M^{2} - M_{1}^{2})^{2} + M_{1}^{2}\Gamma_{1}^{2}} \qquad \text{To}$$

$$BW_{1}(e^{i\phi}BW_{2})^{*} = \left(\frac{M_{1}}{M}\right)^{n_{1}} \left(\frac{M_{2}}{M}\right)^{n_{2}} \underbrace{\frac{e^{-i\phi}\sqrt{\Gamma_{1}M_{1}\Gamma_{2}M_{2}}}{(\mu_{1}+iM_{1}\Gamma_{1})(\mu_{2}-iM_{2}\Gamma_{2})}}_{z \longrightarrow z} \div \frac{(\mu_{1}-iM_{1}\Gamma_{1})(\mu_{2}+iM_{2}\Gamma_{2})}{(\mu_{1}-iM_{1}\Gamma_{1})(\mu_{2}+iM_{2}\Gamma_{2})} = \sqrt{\Gamma_{1}M_{1}\Gamma_{2}M_{2}} \frac{(\cos\phi-i\sin\phi)(\mu_{1}-iM_{1}\Gamma_{1})(\mu_{2}+iM_{2}\Gamma_{2})}{(\mu_{1}^{2}\mu_{1}^{2}\mu_{2}^{2}+\mu_{1}^{2}M_{2}^{2}\Gamma_{2}^{2}+\mu_{2}^{2}M_{1}^{2}\Gamma_{1}^{2}+M_{1}^{2}\Gamma_{2}^{2}}$$

$$\Re(z) = \sqrt{\Gamma_1 M_1 \Gamma_2 M_2} \frac{\cos \phi(\mu_1 \mu_2 + M_1 \Gamma_1 M_2 \Gamma_2) + \sin \phi(M_2 \Gamma_2 \mu_1 - M_1 \Gamma_1 \mu_2)}{\mu_1^2 \mu_2^2 + \mu_1^2 M_2^2 \Gamma_2^2 + \mu_2^2 M_1^2 \Gamma_1^2 + M_1^2 \Gamma_1^2 M_2^2 \Gamma_2^2}$$

 $2\sqrt{\sigma_1\sigma_2}\Re(z)$ is then the interference term, ϕ is the phase shift between the resonances

get the real part which contributes to the cross section, one needs to et the complex term to $\Re(z) + \Im(z)$ form. So first, we need to expand e fraction so there are imaginary terms only in the nominator.

EXPERIMENT

UTRA-PERIPHERAL COLLISIONS AT RHIC

Relativistic Heavy Ion Collider located in ven National La (Long Island, USA) anffequasispeak pagton energy, and proton olarization

sions that don't "collide"

ρ_0 CROSS SECTION

- integrated luminosity of 1100±100 µb–1 of data collected in 2010
- XnXn extrapolated from 1n1n using STARlight
- incoherent components in $d\sigma/dt$ are fit in range -t = (0.2, 0.45)
 - σ_{incoh} are integrals of the fits

Parameter

$\sigma_{ m coh.}$	
$\sigma_{ m incoh.}$	
$\sigma_{\rm incoh.}/\sigma_{\rm coh.}$	

Nuclear excitation and ρ_0 photo production are not completely independent

J/ψ Photoproduction in AU+AU UPC EVENTS AT 200 GEV

• when $Q^2 \sim 0$, p_T of J/ψ is directly related to momentum transfer ($t \sim p_T^2$)

