

Global polarization of Lambda hyperons in Au+Au Collisions at RHIC BES

Isaac Upsal OSU For the STAR Collaboration October 29, 2015

Motivation

Peripheral HICs have large <u>angular momentum</u> ($\sim 10^4$ - 10^5 ħ)

- (partly) transferred to fireball at mid rapidity
 - Related to baryon stopping?
- (partial) **thermalization** of angular d.o.f.s would align hadron spins with \hat{L}
 - Global polarization
 - Prior RHIC studies yielded null results¹
- **<u>Vorticity</u>** quantifies curl of velocity field $\vec{\omega} = \nabla \times \vec{v}$
 - In a hydro description of HIC, vorticity probed by global polarization^{2,3}
 - Largely unexplored in current transport models

¹B. I. Abelev et al. (STAR Collaboration) Phys. Rev. C 76, 024915 – Published 29 August 2007
²F. Becattini, L. P. Csernai, and D. J. Wang Phys. Rev. C 88, 034905 – Published 13 September 2013
³F. Becattini, F. Piccinini, and J. Rizzo Phys. Rev. C 77, 024906 – Published 21 February 2008

• \hat{L} , system angular momentum direction, is out-of reaction plane

10/29/2015

Isaac Upsal

STAR Reaction Plane BB TPC M. and A. Schmah

- Study Au+Au collision in the BES:
 - 7, 11, 19, 27, and 39GeV
- Tracking is performed by the **TPC**
- PID is done using the TPC + TOF

• **BBC** detects participants to determine first order event plane

10/29/2015

Isaac Upsal

Lambda Topological Cut Schematic

Lambda Reconstruction Cuts

- Basic Track Cuts
 - If proton has ToF $0.5 \text{GeV}^2 < \text{m}^2 < 1.5 \text{ GeV}^2$ (TPC $|n_{\sigma}| < 3$)
 - If pion has ToF $(0.017-0.013*p)GeV^2 < m^2 < 0.04 GeV^2$ (TPC $|n_{d}| < 3$)
 - Track pt > 0.2GeV
- Lambda Topological cuts
 - Daughter distance of closest approach to primary vertex < 1 cm, 1.108GeV < mass < 1.122GeV

Lambda Baryon: Spin Probe

- Lambdas are "self analyzing":
 - protons are preferentially emitted in the direction of the spin
 - '*' denotes Lambda rest frame

$$\frac{1}{N}\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{S}_{\Lambda}^* \cdot \hat{p}_p^* \right)$$

• α = 0.642, \vec{S}^*_{Λ} is the Lambda Spin and \hat{p}^*_p is the proton's momentum

Boost into A rest frame: $S_{\Lambda}^{*} P_{p}^{*} S_{\Lambda}^{*}$ Lambda Spin

Measurement Technique

• Assume that the Lambda spin points in the direction of the proton momentum (i.e. ignore the fact that it's just a "tendency" for now)

$$\vec{S}^* = \frac{1}{2\left|\vec{p}_p^*\right|} (0, -\vec{p}_p^*) \qquad \qquad \vec{S} = \vec{S}^* + \frac{\gamma_{\Lambda}^2}{\gamma_{\Lambda} + 1} (\vec{\beta}_{\Lambda} \cdot \vec{S}^*) \vec{\beta}_{\Lambda}$$

- Here β is the velocity, γ is the boost factor
- Angular momentum direction, L̂, is found from the first order event plane
- Is $\vec{S} \cdot \hat{L} > 0$ preferred?

$|\Lambda \text{ and } \overline{\Lambda} \langle \vec{S} \cdot \hat{L} \rangle vs \sqrt{s}|$

- Spins preferentially align with net angular momentum
- Statistically-challenged. All centralities, all momenta
- Results not corrected for event plane resolution

A Centrality dependence of $\langle \vec{S} \cdot \hat{L} \rangle vs \sqrt{s}$

- Uncorrected signal stronger for peripheral collisions
 - Resolution correction underway

Conclusions

- First observation of global polarization in HIC!
- Significance of MinBias signal is at $\sim 3\sigma$ level

$\sqrt{s_{NN}}(\text{GeV})$	7.7	11.5	19.6	27	39
ΛΝσ	3.05	3.39	3.33	3.8	-0.16
$\overline{\Lambda}$ No		2.42	2.05	3.04	1.96

- •Work underway on corrections
 - event plane resolution
 - distribution of proton emission relative to lambda spin
 - acceptance effects

10/29/2015

Isaac Upsal

BACKUP SLIDES

Event Plane Resolution

• In descending order from 7-39 GeV

Resolution correction as a function of centrality

Model Predictions

Isaac Upsal

- Becattini, Csernai, and Wang use 3+1 inviscid hydro with vorticity ($\vec{\omega} = \nabla \times \vec{v}$) put in by hand for prediction
- Polarization is maximal for
 - Semi Peripheral collisions
 - Large Λ momentum

10/29/2015

- Λ emitted in reaction plane
- Predict maximum Polarization: ~< 1%

F. Becattini, L. Csernai and D. J. Wang, Phys. Rev. C 88 (2013) 034905

Event Cuts

- Triggers MB
 - 39GeV: 280001 and 280002
 - 27GeV: 360001 and 360002
 - 19GeV: 340001, 340011, and 340021
 - 11GeV: 310004 and 310014
 - 7GeV: 290001 and 290004
- Event Cuts
 - |ZVtz| < 40cm
 - Tof Multiplicity > 2
 - Rvtx < 2cm</p>
 - BBC ADC Sum West and Sum East > 75

Lambda Stats

Energy (GeV)	Events (Millions)	Lambdas (Millions)	AntiLambas (Millions)	Peak EP Resolution
39	97	42	16	0.21
27	39	21	5.4	0.33
19	29	9.4	2.4	0.42
11	14	6.4	0.39	0.57
7	4	1.7	0.03	0.56

Lambda Decay Kinematic Efficiency

Serious

 efficiency
 issue for
 decays where
 the pion
 points
 backwards in
 Λ rest frame

Low Efficiency

Therefore we measure mostly:

- negative helicity Lambdas
- positive helicity AntiLambdas

Lambda Pt Distribution

• In descending order from 39-7 GeV

Isaac Upsal

Magnetic Chemical Potential

- In reality there is another coupling Sy could see
- Aside from lambda spin coupling with STAR's magnetic field (which we'll ignore) there is potential coupling with the magnetic field from the collision ($\mu_{_{\rm H}}$)

$$e^{-(E-\mu_{\sigma}S_y-\mu_H(S_y\mu_m)-\mu_BB)/T}$$

$$\mu_{m,\Lambda} = -0.6 \qquad \mu_{m,\Sigma^0} > 0$$

• The magnetic moment of the Sigma + expected to be > 0. Maybe we can see Lambda AntiLambda splitting (?)

