

Lambda Polarization in Heavy-ion Collisions at STAR

Isaac Upsal OSU For the STAR Collaboration March 28, 2015

Baryon Stopping in the BES

- Fireball μ_B from baryon stopping increases at low \sqrt{s} AuAu collisions, which we are exploring in the BES at STAR
- Peripheral collisions have large angular momentum (~10⁴-10⁵ ħ)
- L is transferred, in part, to fireball via baryon stopping
 2

L or B

2

Stopping Dynamics and Thermalization

- Stopped baryons have interesting dynamics and thermalization is quick, eg. net proton directed flow
- Through thermalization parton spins can couple to AuAu fireball orbital angular momentum
- Net partonic spin would transfer to emitted particles leading to an intrinsic spin fireball angular momentum correlation (net $_{J}$ polarization) x Λ

Projectile

B. I. Abelev, et al., (STAR Collaboration), Phys. Rev. C 76, 024915 (2007).

Model Predictions

Isaac Upsal

- Becattini, Csernai, and Wang use 3+1 inviscid hydro with vorticity ($\vec{\omega} = \nabla \times \vec{v}$) put in by hand for prediction
- Polarization is maximal for
 - Semi Peripheral collisions
 - Few GeV Λ momentum
 - Λ emitted in reaction plane
- Predict maximum Polarization: 7-9% (overall consistent with previous STAR measurement)
- More recent prediction with viscosity added is more modest (< 1%) general predictions are consistant

F. Becattini, L. Csernai and D. J. Wang, Phys. Rev. C 88 (2013) 034905

Lambda Baryon: Spin Probe

 \bullet Because of parity violating decay Λ baryons are self analyzing

• Momentum of the proton daughter boosted into the Λ rest frame, $\hat{\mathbf{p}}^*$, points preferentially in the direction of the polarization \mathbf{P}_i of the Λ ,

$$\frac{dN}{d\Omega} = \frac{N}{4\pi} \left(1 + \alpha_{\gamma} \mathbf{P}_{i} \cdot \hat{\mathbf{p}} \right)$$

- $lpha_{\gamma}$ is the decay parameter (~0.642)
- Equally true for $\overline{\Lambda}$ and corresponding antiprotons

03/28/2015

 $\begin{array}{c} \Lambda \rightarrow \mathbf{p} + \pi \\ P_{\Lambda} & P_{p} \\ P_{\Lambda} & P_{\pi} \end{array}$

Boost into Λ rest frame:

5

 S_{Λ}^{*} Lambda Spin

Lambda Decay Kinematic Efficiency

Serious
 efficiency
 issue for
 decays where
 the pion
 points
 backwards in
 Λ rest frame

Low Efficiency

Measurement Technique

- Zeroth component of the spin four vector in the Lambda frame is zero
- Take Lambda frame spin three vector component in the direction of proton momentum in rest frame (ignore α for now)

$$S^* = \frac{1}{2 \left| \vec{p}_p^* \right|} (0, -\vec{p}_p^*)$$

• (Standard) boost spin vector into the Lab frame

$$\vec{S} = \vec{S}^* + \frac{\gamma_{\Lambda}^2}{\gamma_{\Lambda} + 1} (\vec{\beta}_{\Lambda} \cdot \vec{S}^*) \vec{\beta}_{\Lambda}$$

• The Polarization (P) is a measure of how aligned the spin is with the angular momentum

$$\hat{L} = (-\sin(\Psi), \cos(\Psi), 0)$$

Polarization Plots: AuAu 39GeV $P \equiv \langle \vec{S} \cdot \hat{L} \rangle$

• A Polarization as a function of ϕ_{Λ} for centrality ranges 0-20%, 20-40%, 40-60%, 60-80%

- Because of low efficiency when pion $p_{_{\rm T}}$ is small the x axis is 0°- 180°
- Many, many plots (7-39GeV AuAu): consistent null result
- Green is straight line fit with error

New Approach: Chemical Potential

- Goal: quote bound on polarization simply with as few ad-hoc cuts as possible (ie. without choosing pt, phi, rapidity)
- Look at correlation of spin with system angular momentum and consider a corresponding polarization chemical potential (like baryon chemical potential)
- Still depends on beam energy and centrality

$$S_y \equiv \vec{S} \cdot \hat{L} \qquad e^{-(E - \mu_\sigma S_y - \mu_B B)/T}$$

• This exponential is plotted below (μ_{B} = 205 MeV, B = 1, T = 150 MeV)

Chemical Potential 19GeV

10

Chemical Potential Fitting

03/28/2015

Isaac Upsal

Conclusions

- No net Λ polarization seen at STAR for AuAu 7, 11, 19, 27, and 39 GeV
- Chemical potential method offers comprehensive measure of polarization
- Upper bound measurement of polarization pending study of systematic errors and fit
- In addition to BES consider AuAu 62.4 and AuAu 200GeV measurements

BACKUP SLIDES

Chemical Potential 19GeV

+ $\mathbf{E}_{_{\Lambda}}$ vs $\mathbf{S}_{_{y}}$ for 19GeV Lambdas and AntiLambdas LOG SCALE

Efficiency Corrections 19GeV

+ $E_{_{\Lambda}}\,vs~S_{_{y}}$ efficiency correction for 19GeV Lambdas and LOG SCALE

Lambda Efficiency

03/28/2015

Isaac Upsal

Lambda 1st Order Polarization

• Manifestation of decay kinematic efficiency affect

 Λ 27GeV 0-80% Pt > 1.0

Event Cuts

- Triggers MB
 - 39GeV: 280001 and 280002
 - 27GeV: 360001 and 360002
 - 19GeV: 340001, 340011, and 340021
 - 11GeV: 310004 and 310014
 - 7GeV: 290001 and 290004
- Event Cuts
 - |ZVtz| < 40cm
 - Tof Multiplicity > 2
 - Rvtx < 2cm</p>
 - BBC ADC Sum West and Sum East > 75

Lambda Cuts

*Cuts from Alex Schm

- Basic Track Cuts
 - If proton has ToF $0.5 < m^2 < 1.5$ (TPC |nsigma| < 3)
 - If pion has ToF 0.017-0.013*p < m² < 0.04 (TPC |nsigma| < 3)
- Lambda Topological cuts
 - Daughter DCA < 1 cm, 1.108 < mass < 1.122 (see table below for more

Lambda Stats

Energy (GeV)	Events (Millions)	Lambdas (Millions)	AntiLambas (Millions)	Peak EP Resolution
39	97	42	16	0.21
27	39	21	5.4	0.33
19	29	9.4	2.4	0.42
11	14	6.4	0.39	0.57
7	4	1.7	0.03	0.56

Event Plane Resolution

• In descending order from 7-39 GeV

STAR 0.9 preliminary 0.8 0.7 0.6 Θ 0.5 \bigcirc \bigcirc 0.4 \bigcirc \bigcirc \bigcirc 0.3 \bigcirc \bigcirc \bigcirc 0.2 \bigcirc \bigcirc \bigcirc 0.1 10 20 30 40 50 60 80 70

Resolution Correction

Lambda Pt Distribution

• In descending order from 39-7 GeV

Isaac Upsal

Polarization Plots: AuAu 7GeV $P \equiv \langle \vec{S} \cdot \hat{L} \rangle$

• A Polarization as a function of ϕ_{Λ} for centrality ranges 0-20%, 20-40%, 40-60%, 60-80%

- Because of low efficiency when pion $p_{_{\rm T}}$ is small the x axis is 0°- 180°
- Many, many plots (7-39GeV AuAu): consistent null result
- Green is straight line fit with error

Polarization Plots: AuAu 11GeV $P \equiv \langle \vec{S} \cdot \hat{L} \rangle$

• A Polarization as a function of ϕ_{Λ} for centrality ranges 0-20%, 20-40%, 40-60%, 60-80%

- Because of low efficiency when pion $p_{_{\rm T}}$ is small the x axis is 0°- 180°
- Many, many plots (7-39GeV AuAu): consistent null result
- Green is straight line fit with error

Polarization Plots: AuAu 19GeV $P \equiv \langle \vec{S} \cdot \hat{L} \rangle$

- A Polarization as a function of ϕ_{Λ} for centrality ranges 0-20%, 20-40%, 40-60%, 60-80%
- Because of low efficiency when pion $p_{_{\rm T}}$ is small the x axis is 0°- 180°
- Many, many plots (7-39GeV AuAu): consistent null result
- Green is straight line fit with error

25