

Recent STAR Results from U+U and Au+Au Collisions

Hui Wang for STAR Collaboration

Outline

- Motivation
- STAR Detector and Data Set
- Azimuthal anisotropy in U+U collisions
- Open heavy flavor in U+U collisions
- Summary

Motivation for U+U Collisions

Allows us to manipulate the initial geometry and study

- How multiplicity depends on N_{part} and N_{coll}
- Path-length dependence of jet quenching
- Particle production in heavy ion collisions (and many other effects)

U+U Collisions

Can we see a difference between Au+Au and U+U and preferentially select body-body or tip-tip U+U collisions?

Selecting body-body or tip-tip

Since in most calculations, multiplicity depends on the N_{part} and N_{coll} and since v_2 is proportional to initial eccentricity

If dN/dη depends on N_{coll}, large dN/dη should correlate with small v₂. \Rightarrow Central U+U collisions are ideal for testing particle production

Strategy: select events with few spectators (fully over-lapping), then measure v_2 vs multiplicity: **how strong is the correlation?**

Expectations from Models

Simulations show that after selecting most fully overlapping collisions, high multiplicity events correlate with small eccentricity (tip-tip) lower multiplicity with large eccentricity (body-body)

The correlation of tip-tip collisions with high multiplicity and small eccentricity, leads to a kink in v_2 at high dN/dq

STAR Detector and Data Set

We've measured the efficiency corrected 2nd and 4th cumulants using Q-cumulants Bilandzic, et. al. Phys.Rev.C83:044913,2011

$$v_2^2\{2\} = \left\langle \left\langle e^{i2(\varphi_i - \varphi_j)} \right\rangle_{i \neq j} \right\rangle \qquad v_2^4\{4\} = -\left\langle \left\langle e^{i2(\varphi_i + \varphi_j - \varphi_k - \varphi_l)} \right\rangle_{i \neq j \neq k \neq l} \right\rangle + 2v_2^2\{2\}^2$$

Minimum-bias U+U and Au+Au

No evidence of knee structure for central U+U

- Glauber model suggest knee structure at ~2% centrality
- Knee washed out by additional multiplicity fluctuations?¹
- Other interpretations?

¹Maciej Rybczyński, et. al. Phys.Rev. C87 (2013) 044908

The U+U v₂{4} results are non-zero in central

- Result of intrinsic prolate shape of the Uranium nucleus
- Au v₂{4}⁴ becomes consistent with zero

*Negative $v_2\{4\}^4$ presented as negative $\ v_2\{4\}$

Dash lines represent top centrality percentages for U+U collisions based on multiplicity, curves are used to guide the eye

v_2 {4} data: we see the prolate shape of the Uranium nucleus \checkmark The lack of a knee indicates a weakness in our multiplicity models

Glauber Model

• Assume deformed Woods-Saxon distribution

$$\rho = \frac{\rho_0}{1 + \exp([r - R']/d)} \qquad R' = R[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]$$

 Average number of particles from each nucleon follows 2component model

$$n_{AA} \propto n_{pp} [(1 - x_{hard}) \frac{N_{part}}{2} + x_{hard} N_{coll}]$$

 Generate N_{ch} by sampling a negative binomial distribution with parameters n_{AA} and k=2

Hiroshi Masui, et. al. Physics Letters B 679 (2009) 440–444

Species	Α	R	d	β ₂	β ₄	NN cross section
Au+Au	197	6.38	0.535	-0.131	-0.031	42
U+U	238	6.81	0.605	0.28	0.093	41.2

v₂/ε₂ follows the same
trend for U+U and Au+Au
As long as the oblate shape of
Au is accounted for

Instead of saturating or slowly rising, v_2/ϵ_2 drops in most central collisions

The drop is sharper for U+U v_2 {4}/ ϵ_2 {4}

Results are consistent with an overestimation of ε_2 in central collisions or deviation from $v_2 \propto \varepsilon_2$ (non-flow, hydro fluctuations?)

Very central collisions provide a stringent test of models

Studying Full Overlap Events

Use slope of v_2 vs dN/d η in U+U to look for correlation between dN/d η and geometry

Use Au+Au as the control sample to show we select full overlap

v₂ vs. Multiplicity In Fully Overlapping Events

- We expect a strong negative slope for U+U and a zero or slightly positive slope for Au+Au
- Dash lines are Glauber model eccentricities scaled by the ratio of $\langle v_2 \rangle$ and $\langle \epsilon_2 \rangle$
- U+U slope is weaker than models predicted, but gets stronger for more central events
- Au+Au slope is negative instead of positive, gets closer to zero for more central events

We fit the slope to see how it evolves as the number of spectators decreases and collisions become more and more overlapping

WWND2014

Glauber vs. IP-Glasma

- The IP-Glasma mode is based on the CGC approach
- The Correlation between eccentricity and multiplicity is weaker in the IP-Glasma model compare to twocomponent MC-Glauber model
- Comparison with data is under investigation, stay tuned!

Bjoern Schenke, Prithwish Tribedy and Raju Venugopalan

Slope vs. ZDC

➢ For tighter cuts, the U+U slope becomes steeper than the Au+Au control sample

Demonstrates that dN/dη is larger for tip-tip U+U collisions: dN/dη can be used to select tip-tip vs body-body enhanced samples

Toward Path Length Dependence of Quenching

- Larger difference in-plane vs out-of-plane path length in U+U?
 - Need to split U+U results into multiplicity bins (body-body vs. tip-tip)
 - A larger-sized data sample of central U+U events will be needed

Heavy Flavor in U+U

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC
- Using HF as a probe to study properties of the QGP and their dependence on system size, energy, ...
- Bjorken energy densities are 15%–20% larger in U + U collisions relative to Au+Au collisions
 - Tip-Tip configuration provides an increase of up to 30% relative to orientation-averaged collisions

WWND2014

Open Charm Hadronic Channel

Similar behavior in U+U and Au+Au collisions observed for D⁰ R_{AA}

Summary

- No evidence of kink structure in central v₂ results from current analysis, additional fluctuations than NBD?¹
- v_2/ϵ_2 turns over in central collisions for both Au+Au and U+U!?
 - Over estimation of ε_2 in glauber model?
- The combination of ZDC and multiplicity can be used in combination to select body-body or tip-tip enhanced samples of central U+U collisions
 - High multiplicity events are biased toward tip-tip collisions, low multiplicity toward body-body
 - Data show weaker correlations than model predictions: larger multiplicity fluctuations?
- U+U collisions provide new opportunities to study path-length dependent jet quenching
 - Need to split U+U results into multiplicity bins (body-body vs. tip-tip)
- Similar behavior in U+U and Au+Au collisions observed for D⁰ R_{AA}

¹ Maciej Rybczyński, et. al.
Phys.Rev. C87 (2013) 044908

Back Up

Multiplicity

$\Delta\eta$ dependence

Remove peak at small $\Delta \eta$ to reduce non-flow effects

WWND2014

Collection of U+U data sample

Implementation of cooling led to huge improvement in accessible luminosity Made acheivement of goals possible

Studying Full Overlap Events

Measurements of v_2

Early spatial anisotropy leads to anisotropy in the final momentum space –Cumulants of the $\langle e^{in\phi} \rangle$ distribution characterize the momentum space anisotropy

We've measured the 2nd and 4th cumulants using the direct cumulant method Bilandzic, et. al. Phys.Rev.C83:044913,2011

$$v_2^2\{2\} = \left\langle \left\langle e^{i2(\varphi_i - \varphi_j)} \right\rangle_{i \neq j} \right\rangle \qquad v_2^4\{4\} = -\left\langle \left\langle e^{i2(\varphi_i + \varphi_j - \varphi_k - \varphi_l)} \right\rangle_{i \neq j \neq k \neq l} \right\rangle + 2v_2^2\{2\}^2$$

Effects of deformation in Au

- Previous study assume no deformation for Au nuclei
- With deformation in Au+Au, the split between U+U and Au+Au is reduced