

Azimuthal Anisotropy in U+U Collisions

Hui Wang (BNL) and Paul Sorensen (BNL) for the STAR Collaboration

Hard Probes 2013, Cape Town, South Africa

Motivation for U+U Collisions

Allows us to manipulate the initial geometry and study

- How multiplicity depends on N_{part} and N_{coll}
- Path-length dependence of jet quenching (and many other effects)

Can we preferentially select **body-body** or **tip-tip** collisions?

Selecting Body-Body or Tip-Tip

Since in most calculations, multiplicity depends on N_{part} and N_{coll} and since v_2 is propotional to the initial eccentricity

If dN/dη depends on N_{coll} or thickness, dN/dη should correlate with small v₂. \rightarrow Central U+U collisions are ideal for testing particle production

Strategy: select events with few spectators (fully over-lapping), then measure v₂ vs multiplicity: **how strong is the correlation?**

Expectations from Models including all configurations of impact parameters and Euler angles

Simulations show that after selecting most fully overlapping collisions, high multiplicity events correlate with small eccentricity (tip-tip) lower multiplicity with large eccentricity (body-body)

The correlation of tip-tip collisions with high multiplicity and small eccentricity, leads to a kink in v_2 at high dN/dq

STAR Detector and Data Set

We've measured the efficiency corrected 2nd and 4th cumulants using Q-cumulants Bilandzic, et. al. Phys. Rev. C 83: 044913,2011

$$v_2^2\{2\} = \left\langle \left\langle e^{i2(\varphi_i - \varphi_j)} \right\rangle_{i \neq j} \right\rangle \qquad v_2^4\{4\} = -\left\langle \left\langle e^{i2(\varphi_i + \varphi_j - \varphi_k - \varphi_l)} \right\rangle_{i \neq j \neq k \neq l} \right\rangle + 2v_2^2\{2\}^2$$

11/4/13

Hard Probes 2013, Cape Town, South Africa

Minimum-bias U+U and Au+Au

v₂{4} data: we see the prolate shape of Uranium ✓ The lack of a knee indicates a weakness in our multiplicity models

Glauber Model

• Assume deformed Woods-Saxon distribution

$$\rho = \frac{\rho_0}{1 + \exp([r - R']/d)} \qquad R' = R[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]$$

 Average number of particles from each nucleon follows 2component model

$$n_{AA} \propto n_{pp} [(1 - x_{hard}) \frac{N_{part}}{2} + x_{hard} N_{coll}]$$

• Generate N_{ch} by sampling a negative binomial distribution with parameters n_{AA} and k=2 Hiroshi Masui, et. al.

Physics Letters B 679 (2009) 440-444

Species	Α	R	d	β ₂	β ₄	NN cross section
Au+Au	197	6.38	0.535	-0.131	-0.031	42
U+U	238	6.81	0.605	0.28	0.093	41.2

v₂/ε₂ follows the same trend
for U+U and Au+Au
As long as the oblate shape of Au is accounted for

Instead of saturating or slowly rising, v_2/ϵ_2 drops in most central collisions

The drop is sharper for $v_2{4}/\epsilon_2{4}$

Results are consistent with an overestimation of ε_2 in central collisions or deviation from $v_2 \propto \varepsilon_2$ (non-flow, hydro fluctuations?)

Very central collisions provide a stringent test of models

Studying Full Overlap Events

Use slope of v_2 vs. dN/d η in U+U to look for correlation between dN/d η and geometry

Use Au+Au as the control sample to show we are selecting full overlap

v₂ vs. Multiplicity In Fully Overlapping Events

- We expect a strong negative slope for U+U and a zero or slightly positive slope for Au+Au
 – Dash lines are Glauber model eccentricities scaled by <v₂>/<ε₂>
- U+U slope is weaker than models predicted, but gets stronger for tighter cuts
- Au+Au slope is negative instead of positive, gets closer to zero for tighter cuts

We fit the slope to see how it evolves as the number of spectators decreases and collisions become more and more overlapping

Slope vs. ZDC

For tighter cuts, the U+U slope becomes steeper than the Au+Au control sample

Demonstrates that multiplicity is larger for tip-tip U+U collisions and can be used to select tip-tip vs body-body enhanced samples

Toward Path Length Dependence of Quenching

Larger difference in-plane vs out-of-plane path length in U+U? Need to split U+U results into multiplicity bins (body-body vs. tip-tip) A larger sized data sample of central U+U events will be needed

Summary

- No evidence of kink structure in central v₂ results from current analysis: fluctuations larger than NBD with k=2?
 Maciej Rybczyński, et. al., Phys. Rev. C87 (2013) 044908
- v_2/ϵ_2 turns over in central collisions for both Au+Au and U+U!?
- ZDC and multiplicity in combination provide a way to select bodybody or tip-tip enhanced samples of central U+U collisions
 - High multiplicity events are biased toward tip-tip collisions, low multiplicity toward body-body
 - Data show weaker correlations than model predictions: larger multiplicity fluctuations?
- U+U collisions provide new opportunities to study path-length dependent jet quenching
 - More statistics are necessary for detailed studies

Back Up

Multiplicity

The corrected multiplicity distribution for 1% central ZDC events

$\Delta\eta$ dependence

The peak at small $\Delta\eta$ is dominated by HBT at low pt and by jets at higher p_T HBT peak only persists to ~0.8 GeV. At ~1.5 GeV, a distinguishable jet-like peak emerges. We subtract the narrow peaks from our results and integrate the remaining $v_2^2(\Delta\eta)$ weighted by the number of pairs vs $\Delta\eta$ in each p_T bin. We then calculate $v_2(p_T)$ using:

$$v_2(p_T) = \frac{\left\langle \cos 2(\varphi_i(p_T) - \varphi_j) \right\rangle}{\sqrt{\left\langle \cos 2(\varphi_i - \varphi_j) \right\rangle}}$$

Collection of U+U data sample

Implementation of cooling led to huge improvement in accessible luminosity Made achievement of goals possible

Studying Full Overlap Events

11/4/13

Measurements of v_2

Early spatial anisotropy leads to anisotropy in the final momentum space –Cumulants of the $\langle e^{in\varphi}\rangle$ distribution characterize the momentum space anisotropy

We've measured the 2nd and 4th cumulants using the direct cumulant method Bilandzic, et. al. Phys.Rev.C83:044913,2011

$$v_2^2\{2\} = \left\langle \left\langle e^{i2(\varphi_i - \varphi_j)} \right\rangle_{i \neq j} \right\rangle \qquad v_2^4\{4\} = -\left\langle \left\langle e^{i2(\varphi_i + \varphi_j - \varphi_k - \varphi_l)} \right\rangle_{i \neq j \neq k \neq l} \right\rangle + 2v_2^2\{2\}^2$$

Hard Probes 2013, Cape Town, South Africa

Effects of deformation in Au

- Previous study assume no deformation for Au nuclei
- With deformation in Au+Au, the split between U+U and Au+Au is reduced