

Global polarization of Lambda hyperons in Au+Au Collisions at RHIC

Isaac Upsal SDU/BNL 06/27/18

Hydrodynamic evolution

From a (lumpy) initial state, solve hydro equations:

movies by Bjorn Schenke

$$d_{\mu}T^{\mu\nu} = 0$$
 $T^{\mu,\nu} = eu^{\mu}u^{\nu} - (p+\Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$

$$\boldsymbol{u}^{\boldsymbol{\mu}}\boldsymbol{d}_{\boldsymbol{\mu}}\boldsymbol{\Pi} = -\frac{1}{\tau_{\Pi}}(\boldsymbol{\Pi} + \boldsymbol{\zeta}\boldsymbol{\theta}) - \frac{1}{2}\boldsymbol{\Pi}\frac{\boldsymbol{\zeta}\boldsymbol{T}}{\tau_{\Pi}}\boldsymbol{d}_{\boldsymbol{\lambda}}\left(\frac{\tau_{\Pi}}{\boldsymbol{\zeta}\boldsymbol{T}}\boldsymbol{u}^{\boldsymbol{\lambda}}\right)$$

& many more terms...

Final state particles from hydro

System cools & expands → Hadronization & "Freezeout"

- emitted particles reflect properties of parent fluid cell (Cooper-Frye)
 - chemical potentials, thermal & collective velocities

QGP fluid: colored quarks deconfined

• $|L| \sim 10^3 h$ in non-central collisions

- How much is transferred to particles at mid-rapidity?
- Does angular momentum get distributed thermally?
- How does that affect fluid/transport?
 - Vorticity: $\vec{\omega} \equiv \frac{1}{2}\vec{\nabla} \times \vec{v}$

• How would it manifest itself in data?

Vortices

Isaac Upsal – June 2018

HIC Vorticity formation

In collision c.m. frame

Local fluid

cell frame

Localized vortex generation via baryon stopping

Viscosity dissipates vorticity to fluid at larger scale

Vorticity – fundamental sub-femtoscopic structure of the "perfect fluid" and its generation

 $\omega = \frac{1}{2}\nabla \times \vec{v} \approx \frac{1}{2}\frac{\partial v_z}{\partial x}$

Vorticity → Global Polarization

• <u>Vortical or QCD spin-orbit</u>: aligned with L Lambda and Anti-Lambda spins

Magnetic field → Global Polarization

Barnett effect

Isaac Upsal – June 2018

How to quantify the effect (I)

- Lambdas are "selfanalyzing"
 - Reveal polarization by preferentially emitting daughter proton in spin direction

As with Polarization \vec{P} follow the distribution: $\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \, \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha \, P \cos \theta^* \right)$ $\alpha = 0.642 \pm 0.013$ [measured] \hat{p}_p^* is the daughter proton momentum direction *in the* Λ *frame* (note that this is opposite for $\overline{\Lambda}$) $0 < |\vec{P}| < 1$: $\vec{P} = \frac{3}{\alpha} \, \overline{\hat{p}_p^*}$

Ingredients: Using STAR

Ingredients: Using STAR (PID)

Ingredients: Using STAR (tracking)

Protons and pions reconstr TPC and TOF for

TPC: Tracking + PID TOF: PID

Lambdas are found topologically using identified protons and pions

Ingredients: Using STAR (Event Plane)

How to quantify the effect (II)

Symmetry: $|\eta| < 1$, $0 < \phi < 2\pi \rightarrow || \hat{L}$

Statistics-limited experiment: we report acceptance-integrated polarization, $P_{\text{ave}} \equiv \int d\vec{\beta}_{\Lambda} \frac{dN}{d\vec{\beta}_{\perp}} \vec{P}(\vec{\beta}_{\Lambda}) \cdot \hat{L}$

 $P_{AVE} = \frac{8}{\pi \alpha} \frac{\langle \sin(\phi_{\hat{b}} - \phi_{p}^{*}) \rangle}{R_{EP}^{(1)}} ** \text{ where the average is performed over events and } \Lambda \text{ s}$ $R_{EP}^{(1)} \text{ is the first-order event plane resolution and } \phi_{\hat{b}} \text{ is the impact parameter angle}$ $** \text{ if } v_{1} \cdot y > 0 \text{ in BBCs } \phi_{\hat{b}} = \Psi_{EP}, \text{ if } v_{1} \cdot y < 0 \text{ in BBCs } \phi_{\hat{b}} = \Psi_{EP} + \pi$

Global polarization measure

- Measured Lambda and Anti-Lambda polarization
- Includes results from previous STAR null result (2007)
- $\overline{P}_{H}(\Lambda)$ and $\overline{P}_{H}(\overline{\Lambda})$ >0 implies positive vorticity
- $\overline{P}_{H}(\overline{\Lambda}) > \overline{P}_{H}(\Lambda)$ would imply magnetic coupling

Global polarization measure

Moscurod Lambda and Anti-

We can study more fundamental properties of the system

previous STAR null result (2007)

- $\overline{P}_{H}(\Lambda)$ and $\overline{P}_{H}(\overline{\Lambda}) > 0$ implies positive vorticity
- $\overline{P}_{H}(\overline{\Lambda})$ > $\overline{P}_{H}(\Lambda)$ would imply magnetic coupling

Vortical and Magnetic Contributions

- Magneto-hydro equilibrium interpretation $P \sim \exp\left(-E/T + \mu_B B/T + \vec{\omega} \cdot \vec{S}/T + \vec{\mu} \cdot \vec{B}/T\right)$
 - for small polarization:

$$P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T} \qquad P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

• vorticity from addition:

$$\frac{\omega}{T} = P_{\overline{\Lambda}} + P_{\Lambda}$$

• B from the difference:

$$\frac{B}{T} = \frac{1}{2\mu_{\Lambda}} (P_{\overline{\Lambda}} - P_{\Lambda})$$

** $\hbar = k_B = 1$

But, even with topological cuts, significant feed-down from Σ^0 , $\Xi^{0/-}$, $\Sigma^{*\pm/0}$... which themselves will be polarized...

Becattini, Karpenko, Lisa, Upsal, Voloshin Phys. Rev. C 95, 054902 (2017)

Vortical and Magnetic Contributions

But, even with topological cuts, significant feed-down from Σ^0 , $\Xi^{0/-}$, $\Sigma^{*\pm/0}$... which themselves will be polarized...

Becattini, Karpenko, Lisa, Upsal, Voloshin Phys. Rev. C 95, 054902 (2017)

Accounting for polarized feeddown

PRIMARY + FEED-DOWN POLARIZATION VORTICAL COMPONENT

primary

$$C_{3} \wedge \uparrow \Sigma^{0} \uparrow \Xi^{-} \uparrow \Xi^{+} \uparrow \Sigma^{+} \uparrow \Sigma^{+} \uparrow \Sigma^{+} \uparrow \Lambda(1580) \text{ etctiff}$$

Accounting for polarized feeddown

PRIMARY + FEED-DOWN POLARIZATION VORTICAL CONPONENT

22

Accounting for polarized feeddown

Accounting for polarized feed-down

$$\begin{pmatrix} \underline{\omega} \\ \overline{T} \\ \underline{B} \\ \overline{T} \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R} (S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \end{bmatrix}^{-1} \xrightarrow{\star \star} \begin{bmatrix} \mathbf{M} \\ \mathbf{$$

 $-f_{\Lambda R}$ = fraction of Λ s that originate from parent $R \rightarrow \Lambda$

- $-C_{\Lambda R}$ = coefficient of spin transfer from parent *R* to daughter Λ
- $-S_R =$ parent particle spin
- $-\mu_R$ is the magnetic moment of particle R
- overlines denote antiparticles

Decay	C
parity-conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving: ${}^{3}/{}^{2}^{+} \rightarrow {}^{1}/{}^{2}^{+} 0^{-}$	1/3
parity-conserving: ${}^{3}/{}^{2} \rightarrow {}^{1}/{}^{2}^{+} 0^{-}$	-1/5
$\Xi^0 \to \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 \to \Lambda + \gamma$	-1/3

From a statistical hadronization model with STAR measurements as parameter inputs (THERMUS)

Becattini, Karpenko, Lisa, Upsal, Voloshin Phys. Rev. C 95, 054902 (2017)

Extracted Physical Parameters

- Significant vorticity signal
 - Falling with energy, despite increasing J_{sys}
 - 6σ average for 7.7-39 GeV

 $= P_{\Lambda_{\text{primary}}} = \frac{\omega}{2 T} \sim 5\%$

- Magnetic field $-\mu_N \equiv \frac{e\hbar}{2m_p}$, where m_p is the proton mass
 - positive value, 1.5σ average
 for 7.7-39 GeV

Vorticity ~ theory expectation

• Thermal vorticity:

$$\frac{\omega}{T} \approx 2 - 10\%$$

 $\omega \approx 0.02 - 0.09 \, fm^{-1} \, (T_{assumed} = 160 \, MeV)$

 Magnitude, √s-dep. in range of transport & 3D viscous hydro calculations with rotation

Csernai et al, PRC90 021904(R) (2014)

TABLE I. Time dependence of average vorticity projected to the reaction plane for heavy-ion reactions at the NICA energy of $\sqrt{s_{NN}} = 4.65 + 4.65$ GeV.

<i>t</i> (fm/ <i>c</i>)	Vorticity (classical) (c/fm)	Thermal vorticity (relativistic) (1)
0.17	0.1345	0.0847
1.02	0.1238	0.0975
1.86	0.1079	0.0846
2.71	0.0924	0.0886
3.56	0.0773	0.0739

Polarization \sim theory expectation (I)

(%)⁴ н<u></u>

Au+Au 20-50%

• Not very sensitive to shear viscosity

• Expectation: falling with \sqrt{s}

å.

A Nature 548, 62-65 (2017)

A Nature 548, 62-65 (2017) Λ PRC76 024915 (2007)

Polarization ~ theory expectation (II)

B-Field ~ theory expectation

Magnetic field:

• Expected sign

 $B \sim 10^{14}$ Tesla $eB \sim 1 m_{\pi}^2 \sim 0.5 \, fm^{-2}$

- Magnitude at high end of theory expectation (expectations vary by orders of magnitude)
- But... consistent with zero
 - A definitive statement requires improved statistics/EP determination

B field **BES II** Projection

- Using statistics from the BES-II + 27 GeV BUR (excepting 9.1 GeV)
- Assuming present centerpoints 9.6σ result
 - Clearly 7 GeV is a statistical blip
- If only 11-27 GeV are used maybe expect ~6σ result for BES-II

Comparison of QGP superlatives

Connection: CVE

- Polarization not inherently chiral
- Large uncertainty term, μ₅, in the delta correlator (related to Chern–Simons)
- For neutral baryons

 (Lambdas) correlator
 predicts separation of B#
 along vorticity, ω

Connection: CME

- Large theoretical uncertainly on B (orders of magnitude + $\sqrt{s_{_{NN}}}$)
- Large uncertainty term, μ₅, in the delta correlator (related to Chern–Simons)
- For charged particles CME predicts separation of +/along B

Azimuthal dependence (I)

- Naively collision starts with strongest vorticity gradient in plane
- A model predicts the opposite dependence
- The dependence of P_H on $\phi_{\Lambda} \Psi_1$ tests spin local thermal equilibrium and model initial conditions

Karpenko & Becattini EPJC (2017) 77:213

Azimuthal dependence (II)

- In opposition to the model prediction
 STAR sees a *larger* polarization in in-plane than in out-of-plane
- Represents an important tension in the measurement

Centrality

• Signal increasing with decreasing centrality falls well in line with theory

Polarization along the beam direction

- This is a brand new area to look!
- Look for sinusoidal polarization structure projected onto the beam direction

S. Voloshin, EPJ Web Conf. 17 (2018) 10700

F. Becattini and I. Karpenko, PRL.120.012302 (2018)

Clear signal at 200 GeV

> Signal qualitatively disagrees with hydro model

1

-1

-2

 p_y [GeV] 0

Phi Meson Polarization (I)

Region of recombination of polarized quarks

 Spin alignment can be determined from the angular distribution of the decay products*:

 $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{\infty} \right) + (3\rho_{\infty} - 1)\cos^2\theta^* \right]$

where N_0 is the normalization and θ^* is the angle between the polarization direction \boldsymbol{L} and the momentum direction of a daughter particle in the rest frame of the parent vector meson.

 A deviation of p₀₀ from 1/3 signals net spin alignment.

*K. Schilling el al., Nucl. Phys. B 15, 397 (1970)

Biao Tu (CPOD 2017)

 $\rho_{00} > 1/3$:

 $\rho_{00} = 1/3$:

Phi Meson Polarization (II)

 Polarization measure is made WRT both the first and second order event planes

 Significant deviation from 1/3 is seen for higher energies

Summary I

- Non-central heavy-ion collisions create QGP with high vorticity
 - *—generated* by early shear viscosity (closely related to initial conditions), *persists* through low viscosity
 - -fundamental feature of *any* fluid, unmeasured until now in heavy-ion collisions
 - relevance for other hydro-based conclusions?
- Huge and rapidly-changing B-field in non-central collisions -not directly measured
 - -theoretical predictions vary by orders of magnitude
 - -sensitive to electrical conductivity, early dynamics
- Both of these extreme conditions must be established & understood to put recent claims of chiral effects on firm ground

Summary II

- Global hyperon polarization: unique probe of vorticity & B-field
 - -non-exotic, non-chiral
 - -quantitative input to calibrate chiral phenomena
- Interpretation in magnetic-vortical model:

 –clear vortical component of right sign
 –magnetic component of right sign, magnitude *hinted at* in BES, but consistent with zero at each √s_{NN}
- Polarization along beam direction has qualitative tension
- Systematic dependences may offer more insight into modeling –sign tension for azimuthal dependence

BES-II: 2019-2020

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \ ({\rm MeV})$	Run Time	Number Events
(GeV/nucleon)				
9.8	19.6	205	4.5 weeks	400M
7.3	14.5	260	5.5 weeks	300M
5.75	11.5	315	5 weeks	230M
4.55	9.1	370	9.5 weeks	160M
3.85	7.7	420	12 weeks	100M
31.2	7.7 (FXT)	420	2 days	100M
19.5	6.2 (FXT)	487	2 days	100M
13.5	5.2 (FXT)	541	2 days	100M
9.8	4.5 (FXT)	589	2 days	100M
7.3	3.9 (FXT)	633	2 days	100M
5.75	3.5 (FXT)	666	2 days	100M
4.55	3.2 (FXT)	699	2 days	100M
3.85	3.0 (FXT)	721	2 days	100M

BES-II ~ 2019-2020

- Collider (e-cooling) & detector upgrades
 - Finer-grained measurements
 - what drives energy dependence of P?
- Increase statistics by an order of magnitude
 - stat. errors reduced by ~ 3
- Improve the avg. 1st-order EP ۲ resolution by 2x
 - stat. errors reduced 2x

Production Plane – <u>NOT Global Polarization</u>

Known effect in p+p collisions [e.g. Bunce et al, PRL 36 1113 (1976)]

• Lambda polarization at *forward* rapidity relative to *production plane*

production plane: $p_{\text{beam}} \times p_{\Lambda}$

- Both may contribute
- <u>Vortical or QCD spin-orbit</u>: aligned with L
- <u>(electro)magnetic coupling</u>: Lambdas aligned

Lambda and Anti-Lambda spins

Lambdas *anti*-aligned, and Anti-

- <u>Polarization w/ production plane:</u>
 - No integrated effect at midrapidity for Lambda
 - No (known) effect *at all* for AntiLambdas

Polarization sensitivity to chiral effects (I)

*Note that only the situation of an abundance of right handed quarks is depicted

- The Chiral Separation Effect (CSE) is an expected axial current along the direction of an external magnetic field
- It has been postulated that the current of axial charges may contribute to the global polarization and effect a dependence of the polarization on charge asymmetry

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Polarization sensitivity to chiral effects (II)

- Hint of a signal slope
 Lambda and Anti-
 - Lambda have opposite-sign slopes
- Isobaric collision systems are a unique environment to test this effect

Momentum and pseudorapidity

No dependence seen on transverse momentum or psuedorapidity

ALICE Results

- At 2.76TeV ALICE sees a null result
- Strongly supports vorticity falling with beam energy
- No hint of Lambda-AntiLambda difference

EPD BBC comparison

