Global polarization of Lambda hyperons in Au+Au Collisions at RHIC BES

Isaac Upsal For the STAR collaboration

Outline

Motivation

- angular momentum and vorticity in heavy ion collisions

- self-analyzing nature of Lambda decay

• Current analysis: STAR @ BES energies – preliminary results

- Analysis details: acceptance, resolution correction
- positive signals for Lambdas and AntiLambdas
- consistency with previous STAR results

Summary & Outlook

- |L| ~ 10⁵ ħ in non-central collisions
 Does angular momentum get distributed thermally?
- Does it generate a "spinning QGP?"
 - consequences?
- How does that affect fluid/transport?
 - Vorticity: $\vec{\omega} = \vec{\nabla} \times \vec{v}$

How would it manifest itself in data?

lsaac Upsal – June 2016

Localized vortex generation via baryon stopping

Viscosity dissipates vorticity to fluid at larger scale

Vorticity – fundamental sub-femtoscopic structure of the "perfect fluid" and its generation

Calculations behind the "perfect fluid" story neglect angular momentum & vorticity altogether. Problem?

Connection to experiment

 Fluid vorticity may generate global polarization (alignment of spin with collision system angular momentum) of emitted particles

- –Betz, Gyulassy, Torrieri PRC76 044901 (2007)
- -Becattini et al., PRC88 034905 (2013)
- -Becattini et al., JPhys 509 012055-5 (2014) (SQM2013)
- -Csernai et al., JPhys 012054-5 (2014) (SQM2013)
- -Grossi JPhys 527 012015-5 (2014) (XIV Conf. Th. Physics)
- -Becattini et al. arxiv:1501.04468

 Similar conclusions based on QCD spin-orbit coupling (nonhydro picture)

- -Voloshin arxiv:nucl-th/0410089
- -Liang and Wang, PRL94 102301 (2005); PRL96 039901(E) (2006)
- -Liang and Wang, PLB629 20 (2005)

Analysis approach

- Study Au+Au collision in the BES: 7.7, 11.5, 14.5, 19.6, 27, 39 GeV
- Tracking is performed by the TPC • PID is done using the TPC + TOF

• **BBC** detects participants to determine first order event plane

Reaction Plane

 \rightarrow estimate of direction of angular momentum \hat{L}

Analysis approach

Lambdas are "self-analyzing"

- Reveal polarization by preferentially emitting daughter proton in spin direction
- For AntiLambdas spin is opposite anti-proton direction
 - E. Cummins, Weak Interactions (McGraw-Hill, 1973)
 - Basic track cuts
 - If proton has ToF: $0.5 (GeV/c^2)^2 < m_{ToF}^2 < 1.5 (GeV/c^2)^2$ and TPC $|n_{\sigma}| < 3$
 - If pion has ToF: $(0.017 0.013 \frac{p}{GeV/c})(GeV/c^2)^2 < m_{ToF}^2 < 0.04 (GeV/c^2)^2$ and TPC $|n_{\sigma}| < 3$
 - Lambda topological cuts:
 - daughter DCA < 1cm, $1.108 \, GeV/c^2 < m_{inv} < 1.122 \, GeV/c^2$

lengths in cm	Both have ToF	Proton has ToF	Pion has ToF	Neither has ToF	0.05 STAR
Proton DCA	0.1	0.15	0.5	0.6	19GeV
Pion DCA	0.7	0.8	1.5	1.7	0.03 0-80%
Lambda DCA	1.3	1.2	0.75	0.75	0.02
Lambda Decay Length	2	2.5	3.5	4	0 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.1
					$m_{\rm inv}$ (GeV/c ²

 $\vec{S}_{\Lambda} \qquad \theta \qquad \overline{p}_{p}$

Topological cuts optimized to maximize yield significance

(From Alex)

Isaac Upsal <u>– June 2016</u>

Contributors to Global Polarization

Sigma feed-down tends to dampen the effect

L or

Contributors to Global Polarization

or

<u>Vortical or QCD spin-orbit</u>: Lambda and AntiLambda spins aligned with L

• Sigma feed-down tends to dampen the effect

<u>(electro)magnetic coupling</u>: Lamdas *anti*-aligned, and AntiLambdas aligned

Sigma feed-down goes in same direction as the effect on primaries

Contributors to Global Polarization

Known effect in p+p collisions [e.g. Bunce et al, PRL 36 1113 (1976)]

• Lambda polarization at *forward* rapidity relative to *production plane*

Not global

<u>Vortical or QCD spin-orbit</u>: Lambda and AntiLambda spins aligned with L
 Sigma feed-down tends to dampen the effect

<u>(electro)magnetic coupling</u>: Lamdas *anti-*aligned, and AntiLambdas aligned
 Sigma feed-down goes in same direction as the effect on primaries
 <u>Polarization w/ production plane</u>: No integrated effect at midrapidity for Lambda

 also, would polarize perpendicular to L for out-of-plane particles – tested (big errors)

How to quantify the effect?

For an ensemble of Λ s with polarization \vec{P} :

$$\frac{dW}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

 $\alpha = 0.642$ [measured]

 \hat{p}_{p}^{*} is daughter proton momentum direction *in* Λ *frame* *note this is opposite for $\overline{\Lambda}$

$$0 < |\vec{P}| < 1: \qquad \vec{P} = \frac{3}{\alpha} \, \vec{\hat{p}}_{p}^{*}$$

How to quantify the effect?

For an ensemble of As with polarization \vec{P} :

$$\frac{dW}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

 $\alpha = 0.642$ [measured]

 \hat{p}_{p}^{*} is daughter proton momentum direction *in* Λ *frame* *note this is opposite for $\bar{\Lambda}$ $0 < |\vec{P}| < 1$: $\vec{P} = \frac{3}{\alpha} \bar{p}_{p}^{*}$

Dynamic heavy ion collision may produce several "ensembles" $\rightarrow \vec{P}$ may depend on $\vec{\beta}_{\Lambda}$

east

BBC

Models [Beccatini, Csernai, Liang, Wang, others] predict various dependence on p_r , ϕ

west BBC

How to quantify the effect?

For an ensemble of As with polarization \vec{P} :

$$\frac{dW}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

 $\alpha = 0.642$ [measured]

 \hat{p}_{p}^{*} is daughter proton momentum direction *in* Λ *frame* *note this is opposite for $\overline{\Lambda}$ $0 < |\vec{P}| < 1: \quad \vec{P} = \frac{3}{\alpha} \, \overline{\hat{p}}_{p}^{*}$

Dynamic heavy ion collision may produce several "ensembles" $\rightarrow \vec{P}$ may depend on β_{Λ}

Models [Beccatini, Csernai, Liang, Wang, others] predict various dependence on p_r , ϕ

Symmetry: $|y| < 1, 0 < \phi < 2\pi \rightarrow \vec{P}_{ave} \parallel \hat{L}$

Statistics-limited experiment: we report acceptance-integrated polarization, $P_{\text{ave}} \equiv \int d\vec{\beta}_{\Lambda} \frac{dN}{d\vec{B}_{\Lambda}} \vec{P}(\vec{\beta}_{\Lambda}) \cdot \hat{L}$

east

BBC

 $P_{AVE} = \frac{8}{\pi \alpha} \frac{\langle \sin(\Psi_{EP}^{(1)} - \varphi_p^*) \rangle}{R^{(1)}} \text{ where the average is performed over events and } \Lambda s$

- $\Psi_{EP}^{(1)}$ is the first-order event plane (found with BBCs)
- $R_{
 m EP}^{(1)}$ is the first-order event plane resolution (same as v_1 analysis)

BBC

Correcting for reaction-plane resolution

Purity Correction

Combinatoric background to the Lambda distribution

- Should give a null result
- Simply scale data by (S+B)/B

Vortical-Magnetic decomposition

If the signal is small enough the signal can be decomposed very simply into it's separate magnetic and vortical components

- Assume Lambdas and AntiLambdas experience the same vortical coupling – fundamental to our understanding about vorticity
- Define the magnetic component as negative if the measured AntiLambda ($\mu^{\bar{\Lambda}}{>}0$) polarization signal is greater than the Lambda ($\mu^{\Lambda}{<}0$) polarization signal

$$P_{\text{Vortical}} = \frac{1}{2} (P_{\Lambda} + P_{\bar{\Lambda}}) \qquad P_{\text{Magnetic}} = \frac{1}{2} (P_{\Lambda} - P_{\bar{\Lambda}})$$

Each of these are corrected separately for feed-down

Vortical-Magnetic decomposition 2

Not only is this decomposition nice, it is *necessary* for correcting the results for feed-down

- Σ^{0} , Ξ^{0} , Ξ^{-} , Ω^{-} all decay into Lambdas
- Fraction of the spin is transmitted to daughters
- Assume primary Lambdas and AntiLambdas experience the same vortical coupling as all baryons (including those that decay into Lambdas)
- For the magnetic component the polarization is not the same, it depends on the ratio of magnetic moments
- E.g. Σ^0 feed-down: Lambda daughters carry -1/3 of the Σ^0 spin

$$P_{\Sigma^{0} \text{ feed-down}}^{V} = -\frac{1}{3} P_{\Lambda \text{ primary}}^{V} P_{\Sigma \text{ feed-down}}^{M} = -\frac{1}{3} \frac{\mu_{\Sigma^{0}}}{\mu_{\Lambda}} P_{\Lambda \text{ primary}}^{M}$$

Preliminary results – uncorrected for RP resolution

statistical errors only.

First clear positive signal of global polarization in heavy ion collisions!

$\sqrt{s_{_{ m NN}}}$ (GeV)	7.7	11.5	14.5	19.6	27	39
Λ	3.6σ	3.5σ	2.4σ	3.1σ	3.5σ	1.1σ
anti-A	-	2.1σ	1.1σ	2.4σ	2.9σ	1.6σ

Marginal significance for one energy.

Ensemble & trend adds confidence.

Both Lambdas and AntiLambdas show positive polarization → vorticity and/or spin-orbit

- increased AntiLambdas polarization could arise from (electro)magnetic contribution, but errorbars...
- Signal falls with energy physics or simply loss of resolution?

Isaac Upsal – June 2016

Preliminary results – corrected for RP resolution

• First clear positive signal of global polarization in heavy ion collisions!

$\sqrt{s_{_{ m NN}}}$ (GeV)	7.7	11.5	14.5	19.6	27	39
Λ	3.6σ	3.5σ	2.4σ	3.1σ	3.1σ	1.2σ
anti-A	-	2.1σ	1.1σ	2.4σ	3.0σ	1.7σ

Marginal significance for *one* energy.

Ensemble & trend adds confidence.

Both Lambdas and AntiLambdas show positive polarization \rightarrow vorticity and/or spin-orbit

• increased AntiLambdas polarization could arise from (electro)magnetic contribution, but errorbars...

Resolution Correction in centrality bins

Isaac Upsal – June 2016

Corrected for RP resolution & combinatoric background

- Subtracting residual effect from combinatoric background below mass peak
 - Scale each point by (S+B)/S Black bars are systematic errors – from slight positive residual mass background effect Empty points are from 2007 STAR publication

Decompose into magnetic (B) and vortical (V)

Decomposition into vortical and magnetic

$$P_{\text{Vortical}} = \frac{1}{2} (P_{\Lambda} + P_{\bar{\Lambda}}) \qquad P_{\text{Magnetic}} = \frac{1}{2} (P_{\Lambda} - P_{\bar{\Lambda}})$$

Vortical and magnetic corrected for feed-down

- Correcting for feed-down from Σ^0 , Ξ^0 , Ξ^- , Ω^- .
 - A significant fraction of our Lambdas are actually from feed-downs
 - The spin of the daughter Lambda does not necessarily point in the same direction as their parents

Summary

- Large angular momentum in non-central heavy-ion collisions may be partially transferred to the hot fireball at midrapidity
 - thermalization: if angular momentum is distributed thermally, spin states will be preferentially occupied
 - In a hydro scenario, achieved through vorticity generated by shear viscosity
 - -At a microscopic level, may be due to QCD spin-orbit coupling
- Global hyperon polarization probes this (largely unexplored) physics
- STAR has seen the first positive signal of global hyperon polarization
 - -2.5σ to 3.5σ signal for Λ 's at each energy below 39 GeV
 - -previous STAR "null result" appears to fall in line with systematics!
 - -falls with energy driving physics?
 - -hint of larger signal for antibaryons additional magnetic effect?
- higher statistics & resolution in BES-II will allow important differential studies
 - -centrality, p_T, phi, directional mapping

BES-II: 2019-2020

inner TPC upgrade

NG-		127	1	Inal	X		
√S _{NN} (GeV)	5.0	7.7	9.1	11.5	13.0	14.5	19.6
μ_{B} (MeV)	550	420	370	315	290	250	205
BES I (MEvts)		4.3		11.7		24	36
Rate(MEvts/ day)		0.25		1.7		2.4	4.5
BES I <i>L</i> (1×10 ²⁵ /cm ² sec)		0.13		1.5		2.1	4.0
BES II (MEvts)		100	160	230	250	300	400
eCooling (Factor)	2	3	4	6	8	11	15
Beam Time		14	9.5	5.0	3.0	2.5	3.0

Event Plane Detector

TOF

BES-II ~ 2019-2020 Collider (e-cooling) & detector upgrades Finer-grained measurements what drives energy dependence of P? Increase statistics by order of magnitude stat. errorbars reduced by ~3 Improve avg 1st-order RP resolution by 2x

stat. errorbars reduced by another ~2

Topologically-dependent efficiency

Spin-orientation-dependent efficiency (!)

Daughter proton & pion have equal-magnitude momentum in Lambda frame, but not in STAR frame

$$\frac{R_{\pi}}{R_{p}} = \frac{\left|\vec{p}_{T,\pi}\right|}{\left|\vec{p}_{T,p}\right|} \sim \frac{m_{\pi}}{m_{p}} \sim \frac{1}{7}$$

 $\rightarrow \pi$ tracking drives Λ efficiency

pion emitted backward in Lambda c.m., \rightarrow tight curl, large DCA (distance to collision vertex)

- \rightarrow much-reduced efficiency
- → higher efficiency to find negative-helicity Lambdas

Topologically-dependent efficiency

Spin-orientation-dependent efficiency (!)

- Same effect seen in embedding/GEANT simulations
- p_T-dependent
- not correlated with RP
- explicitly cancels when summing regions separated by 180 degrees

effect does not affect P_{ave}

HIJING events through simulated STAR detector & tracking

Effect of (Anti)Sigma feed-down

- $\sum_{\frac{1}{2}^{+}}^{0} \longrightarrow \bigwedge_{\frac{1}{2}^{+}} + \underbrace{\gamma}_{1^{-}}$
- A significant fraction (~30%) of our Lambdas are actually feeddown from Sigma0

• The daughter Lambda tends to have spin direction opposite that of the parent Sigma

Scenario 1: spin of all primary particles $(\Lambda, \Sigma^0, \overline{\Lambda}, \overline{\Sigma}^0)$ aligned with \vec{J}_{system} , due to vorticity (or whatever):

 \Rightarrow primary Λ (and $\overline{\Lambda}$) aligned with \vec{J}_{system} , but secondary Λ (and $\overline{\Lambda}$) aligned against \vec{J}_{system}

Thus, for vorticity-induced polarization, **feed-down tends to damp the signal**. STAR's 2004 paper estimated < 30% damping effect

Scenario 2: polarization through coupling of particle magnetic moment to B-field of the system

$$\vec{\mu}_{\Lambda} = (-0.613\mu_N)\vec{S}_{\Lambda} \implies \vec{S}_{\Lambda[\text{primary}]} \text{ will be antialigned with } \vec{J}_{\text{system}} (\vec{S}_{\Lambda[\text{primary}]} || - \vec{J}_{\text{system}})$$

 $\vec{\mu}_{\Sigma^0} = (+0.79\mu_N)\vec{S}_{\Sigma^0} \implies \vec{S}_{\Sigma^0}$ will be aligned with \vec{J}_{system} $(\vec{S}_{\Sigma^0} || + \vec{J}_{\text{system}})$

 \Rightarrow daughter Λ 's will be antialigned with \vec{J}_{system} $\left(\vec{S}_{\Lambda[secondary]} \| - \vec{J}_{system}\right)$

Similar argument for the antiparticles, where both the primary and secondary $\overline{\Lambda}$ align with \overline{J}_{system}

Thus, for magnetic-coupling-induced polarization, **feed-down goes in the same direction as the signal from primary Lambdas.**

Isaac Upsal – June 2016

Effect of (Anti)Sigma feed-down

 $\sum_{\frac{1}{2}^{+}}^{0} \longrightarrow \bigwedge_{\frac{1}{2}^{+}}^{1} + \underbrace{\gamma}_{1^{-}}^{-}$

(p-wave decay)

 A significant fraction (~30%) of our Lambdas are actually feeddown from Sigma0

• The daughter Lambda tends to have spin direction opposite that

of the parent Sigma

under assumption that Σ^0 polarizes as Λ does:

$$\boldsymbol{P}_{\text{primary }\Lambda} = \frac{1 + \boldsymbol{N}_{\Sigma^0} / \boldsymbol{N}_{\text{prim }\Lambda}}{1 - \frac{1}{3} \boldsymbol{N}_{\Sigma^0} / \boldsymbol{N}_{\text{prim }\Lambda}} \boldsymbol{P}_{\text{measured }\Lambda} \equiv \mathbf{K}_{\Sigma^0 \to \Lambda} \boldsymbol{P}_{\text{measured }\Lambda}$$

	model	N[Sigma0]/N[Lam bda]	K[Sigma0- >Lambda]							
13	"isospin effect" (COSY-11) (*)	1/3	1.5							
A-E	THERMUS with, w/o resonances (*)	0.36-0.67	1.5-2.2							
SAL	"Coalescence" (*)	0.2-1.0 (1.0?)	1.3-3							
here 🗝	Chemical equilibrium with T=150 MeV	0.59	2							
	STAR estimate from p-Lambda paper	0.73	2.3							
A CAR	(*) G. Van Buren (STAR) nucl-ex/0412034									

Conservative range: 1.5-2.5

Used

Previous STAR result

Phys RevC **76**, 024915 (2007) concluded null signal

$$\left\langle \vec{\vec{S}}_{\Lambda}^{*} \cdot \hat{L} \right\rangle = -\frac{1}{2} P_{\Lambda}$$

oops

7 signal signal

200 GeV

62.4 GeV

A 1.7-sigma signal seen for Anti-Lambdas at 62.4 GeV?

Mass Purity Correction

- Effect: overall scale up
- Correction based on the fact that not all "Lambdas" in the mass peak are real

$$\langle \hat{S}^* \cdot \hat{L} \rangle_{\text{On Peak}} = \frac{S \langle \sin(\Psi_1 - \varphi_p^*) \rangle_{\Lambda} - B \langle \sin(\Psi_1 - \varphi_p^*) \rangle_{\text{Off Peak}}}{S + B}$$

$$\langle \hat{S}^* \cdot \hat{L} \rangle_{\Lambda} = \frac{S+B}{S} \langle \sin(\Psi_1 - \varphi_p^*) \rangle_{On Peak}$$

- We measure the signal on peak, but we want to know the underlying signal for the Lambdas
- Much like flow we can subtract off any signal we see off peak

Where does $\langle \sin(\Psi_1 - \varphi_p^*) \rangle_{\text{Off Peak}} \neq 0$ come from?

- Formalism works but does it make sense?
- Primary protons and pions should have no signal
- Few non-Lambda sources for non-primary protons
- Perhaps off mass signals come from orphan protons

Mass Purity Correction: Lambda

Isaac Upsal – June 2016