

Y production in U+U collisions at the STAR experiment

Róbert Vértesi for the STAR collaboration

Motivation

Quarkonium as an sQGP thermometer

- Due to Debye-screening, Quarkonium states are expected to dissociate at different temperatures in the sQGP, providing a "thermometer" for the medium [1].
- J/ψ suppression was suggested to be a smoking gun signature for QGP [2]. However, effects such as quark pair recombination (in the plasma) and feed-down, co-mover

$$T_{c} \cap \frac{1}{\langle r \rangle} [fm^{-1}]$$

Τ/

 $\chi_{c}(1P)$

Upsilon yield

absorption (in the hadronic phase) complicate the interpretation of J/ψ measurements

Upsilons in RHIC: a cleaner probe

- Recombination and co-mover absorption are negligible at RHIC energies.
- Central 193 GeV U+U collisions provide the highest energy density at RHIC, where the strongest suppression of Y states are expected.
- Models with different formalisms and assumptions, however, give different predictions. Two popular examples are Refs. [3,4]. Precise data are needed to constrain the models.

Measurement

Experiment: Solenoidal Tracker at RHIC

Reconstruction in the the dielectron channel $\Upsilon \rightarrow e^+e^-$ (BR~2%) at mid-rapidity (|y| < 1.0), in 3 centrality and p_T bins. The Upsilon is not abundant: identification and background rejection is a challenge.

Because of scarcity of statistics, the peak parameters are fixed from embedded MC. The relative suppression of the excited states is taken from the 0-60% centrality data. This decreases random fluctuation, but shows up in the systematics.

Spectrum and x-section

Y cross section (STAR preliminary)			
U+U 193 GeV, 0-60% centrality			
$B_{ee} \frac{d\sigma_{AA}^{\Upsilon}}{dy} \bigg _{ y <1} = (4.37 \pm$	1.09 stat.	+0.65 -1.01) μb svst	

SPAR

together

with peak

Major systematic uncertainties (%) (STAR preliminary)		
Geometrical acceptance	+1.7 -3.0	
Trigger efficiency	+1.1 -3.6	
Tracking efficiency	11.8	
TPC electron identification	+4.0 -6.4	

15M events (263 µb⁻¹ integrated luminosity) processed; 2296 e^+e^- pairs with a reconstructed invariant mass m_{ee} >5 GeV remain after selection. Most of them are background from several sources: combinatorial pairs (random correlation), Drell-Yan (DY) electrons, pairs from open bb production (BB).

10 p_{_} [GeV/c] Fit function is $f(p_T) = \frac{p_T}{\exp(p_T / T + 1)}$

The expected value for T is extrapolated from ISR, CDF and CMS measurements

TPC-BEMC matching	5.4
BEMC electron identification	5.9
Embedding p_T and y shapes	2.1
Signal extraction	+4.8 -18

Nuclear modification factor

Nuclear modification factor (R_{AA}) compares the corrected yield in A+A collisions to that in p+p, scaled by the number of binary collisions.

Acceptance and efficiency

- Geometrical acceptance, trigger, tracking, matching and cluster compactness cut efficiencies are from embedded simulation.
- E/p and dE/dx efficiencies are calculated using single identified electron samples. Around 2-3% of the Y are reconstructed.

Conclusion

- As expected, data trend towards stronger suppression of Y(1S+2S+3S) with higher number of participants
- This indicates an increased dissociation of the Y states with energy density
- Potential model 'A' of Ref. [3], based on heavy quark free energy, is disfavored

Nuclear Physics Institute Academy of Sciences of the Czech Republic

The work has been supported by the grant 13-02841S of the Czech Science Foundation (GACR). The work has been supported by the MSMT grant CZ.1.07/2.3.00/20.0207 of the European Social Fund (ESF) in the Czech Republic: "Education for Competitiveness Operational Programme" (ECOP).

References:

[1] Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008) [2] T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986) [3] M. Strickland, D. Bazow, Nucl. Phys. A879, 25 (2012) [4] A. Emerick, X. Zhao, R. Rapp, Eur.Phys.J A48, 72 (2012)