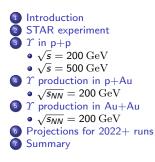
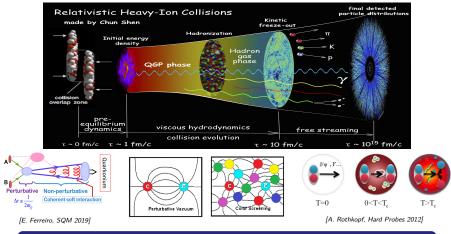
Overview of \varUpsilon production studies performed with the STAR experiment

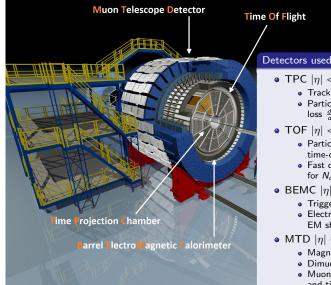
Leszek Kosarzewski for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague


ICHEP 2020, Prague, Czech Republic 30.7.2020

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education


The work was also supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

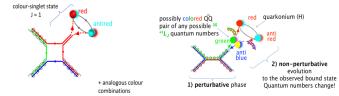


Υ - a probe of quark-gluon plasma

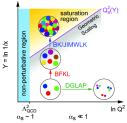
Quark-gluon plasma studies with \varUpsilon states

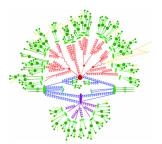
- ullet QGP can be created in heavy-ion collisions and probed using arLambda states
- $\Upsilon(nS)$ states $\Upsilon = b\bar{b} \ (m_{u,d} << m_b)$:
 - · Contain heavy quarks, created at the early stages of the collision
 - Dissociate at high T in QGP via Debye-like screening [Phys.Lett.B 178(4),416-422(1986)]

Detectors used for quarkonium studies

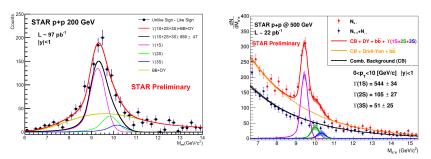

- TPC $|\eta| <$ 1, 0 $\leq \phi < 2\pi$
 - Tracking momentum measurement
 - Particle identification based on energy loss $\frac{dE}{dx}$
- TOF $|\eta| < 1$, $0 \le \phi < 2\pi$
 - Particle identification based on time-of-flight
 - Fast detector used to remove pile-up for N_{ch} determination
- BEMC $|\eta| <$ 1, 0 $\leq \phi < 2\pi$
 - Trigger on high-p_T electrons
 - Electron identification via *E/p* and EM shower shape
- MTD $|\eta| < 0.5$, 45% in ϕ
 - Magnet used as hadron absorber
 - Dimuon trigger
 - Muon identification utilizing position and time-of-flight information
 - μ less bremsstrahlung than e

L. Kosarzewski

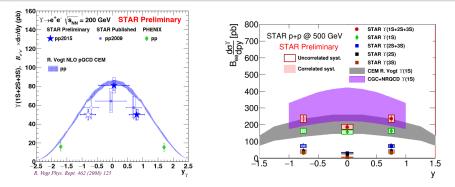

Υ production in p+p collisions

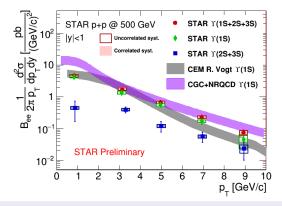

• Study of production mechanism: Color Singlet vs. Color Octet channels

- Events with high charged particle multiplicity
 - Interplay between hard and soft processes
 - Saturation effects/multiple parton interactions



$\Upsilon ightarrow e^+e^-$ signal in p+p at 200 and 500 GeV


 $\Upsilon
ightarrow e^+ e^-$ in 2015 p+p $\sqrt{s} = 200 \text{ GeV}$ $\Upsilon \rightarrow e^+ e^-$ in 2011 p+p $\sqrt{s} = 500 \text{ GeV}$

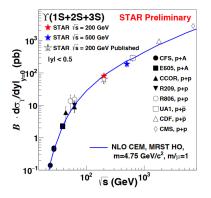

Signal extraction

- Challenging to extract individual $\Upsilon(nS)$ yields!
- Fit *m_{ee}* histograms with:
 - Signal lineshapes from STAR detector simulation
 - Backgrounds: combinatorial, bb, Drell-Yan

arLambda rapidity dependence in p+p at 200 and 500 ${ m GeV}$

- $\sqrt{s} = 200 \text{ GeV}$ STAR data:
 - Slightly narrower than Color Evaporation Model (CEM)
- $\sqrt{s} = 500 \text{ GeV}$ data:
 - Separate Υ(1S) and Υ(2S)(NEW!), Υ(3S)(NEW!) spectra.
 - Flatter rapidity spectrum compared to $\sqrt{s}=200~{
 m GeV}$
 - Dip at mid-rapidity for $\Upsilon(2S+3S) \approx 2\sigma$ level from flat, mostly due to low $\Upsilon(3S)$ yield
 - CEM model (inclusive) consistent with the measurement for $\Upsilon(1S)$ [Phys.Rev.C 92 034909(2015)]
 - CGC+NRQCD predictions for direct $\Upsilon(1S)$ are above the data for inclusive $\Upsilon(1S)$ [Phys.Rev.D 94, 014028(2016)],[Phys.Rev.Lett. 113, 192301(2014)]

- Separate $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ spectra.
- CEM calculation for inclusive $\Upsilon(1S)$

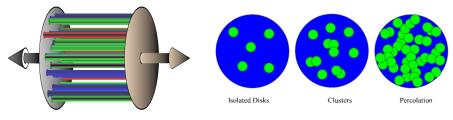

[Phys.Rev.C 92 034909(2015)]

- Agree with data reasonably well
- CGC+NRQCD for direct \varUpsilon

[Phys.Rev.D 94, 014028(2016)] [Phys.Rev.Lett. 113, 192301(2014)]

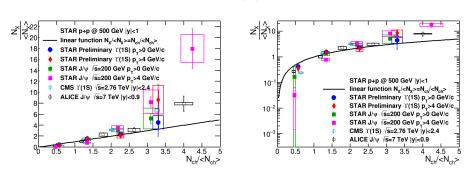
• $\Upsilon(1S)$: model calculation is above the data points. Caveat: additional corrections are needed at low p_T according to authors.

$\Upsilon \rightarrow e^+e^-$ integrated cross section in p+p



STAR [Phys.Lett.B 735,127–137(2014)] CDF [Phys.Rev.Lett. 88,161802(2002)] CMS [Phys.Rev.L 88,161802(2002)] CFS [Phys.Rev.Lett. 39,1240-1242(1977)] CFS [Phys.Rev.Lett. 41,646–687(1978)] CFS [Phys.Rev.Lett. 42,486–489(1979)] CFS [Phys.Rev.Lett. 45,1962–1964(1985)] E605 [Phys.Rev.D 43,2815–2835(1991)]] E605 [Phys.Rev.D 43,2815–2835(1991)]] E605 [Phys.Rev.D 43,2815–2835(1991)]] ECOR [Phys.Lett.B 73,394–402(1979)] L. Camilleri, T.B.W. Kirk, H.D.I. Abarbanel (Eds.) E666 [Phys.Rev.Lett. 91,481–486(1980)]

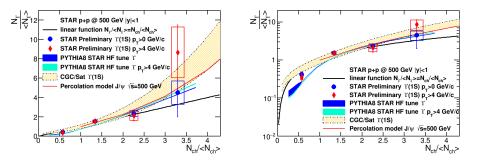
Integrated cross section


- $B_{ee} \frac{d\sigma}{dy}|_{|y|<0.5} = 81 \pm 5(stat) \pm 8(syst)$ pb in p+p collisions at $\sqrt{s} = 200$ GeV
- $B_{ee} \frac{d\sigma}{dy}|_{|y|<0.5} = 186 \pm 14(stat) \pm 33(syst)$ pb in p+p collisions at $\sqrt{s} = 500$ GeV
- STAR results follow the world data trend
- Consistent with the Color Evaporation Model calculation [Phys.Rep. 462, pp.125–175(2008)]

Event activity in Percolation model

[Ann.Rev.Nucl.Part.Sci.60, 463-489(2010)] [Proc.of SPIE, 100313U(2016)]

- Pairs of partons form elongated strings of color field
- In high charged particle multiplicity (N_{ch}) events, many strings overlap and interact (percolation)
 - Interactions lower N_{ch} yield from soft processes
 - Hard processes mostly unaffected increase faster with N_{ch}
- Click to see backup slide 26 for more info!
- Similar to CGC


 $\gamma \rightarrow e^+ e^-$

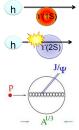
[JHEP04,103(2014)],[Nucl.and Part.Phys. Proc., 276-278, pp.261–264(2016)],[Phys.Lett.B 712,165–175(2012)],[Phys.Lett.B 786,87-93(2018)]

- Distributions of N_{ch} fully corrected using unfolding procedure. See backup: 27
- ullet Similar trends at RHIC and LHC for \varUpsilon and J/ψ

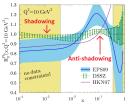
Υ production vs. event activity - models

$$\Upsilon
ightarrow e^+e^-$$

- PYTHIA8 and String Percolation models reproduce the trend in the data [E. G. Ferreiro, C. Pajares, Phys. Rev. C, 86, 034903(2012)]
- CGC/Saturation model describes the data within large uncertainties [E. Levin, M. Siddikov, EPJC, 97(5), 376(2019)], [M. Siddikov, et al, arXiv:1910.13579 [hep-ph]]
- Suggest Υ production in MPI or saturation effects

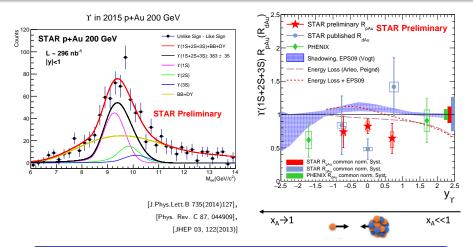


p+A collisions (Cold Nuclear Matter (CNM) effects):


 Comover interactions - very small for Υ(1S) [Phys.Lett.B 503, 104(2001)]

• Nuclear absorption: σ_{abs}

- Nuclear PDFs: shadowing, anti-shadowing
- Studied by measuring Nuclear Modification Factor: $R_{pA} = \frac{\sigma_{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{p+Au}/dp_T dy}{d^2 \sigma_{pp}/dp_T dy}$



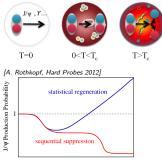
[L. Grandchamp, LBNL 2005]

[Nucl.Phys.A 926 24-33(2014)]

Υ production in p+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

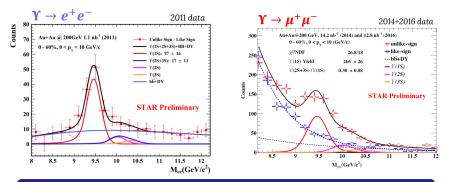
$\Upsilon(1S+2S+3S)$

- Improved precision over published results from R_{dAu}


 - ~ 50% smaller statistical uncertainty vs. y $R_{PAu}|_{|y|<0.5} = 0.82 \pm 0.10(stat.)^{+0.08}_{-0.07}(syst.) \pm 0.10(glob.)$
- Indication of $\Upsilon(1S+2S+3S)$ suppression in p+Au collisions

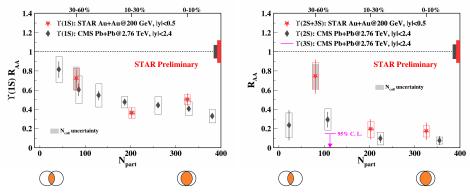
Heavy ion (A+A) collisions (QGP+CNM effects):

 Quarkonium states dissociate at high temperature in QGP via Debye-like screening [Phys.Lett.B 178(4),416-422(1986)]


• Sequential suppression due to each $\Upsilon(nS)$ state dissociating at different $T \rightarrow$ estimate of T [Phys.Rev.D 64, 094015(2001)]

Energy Density

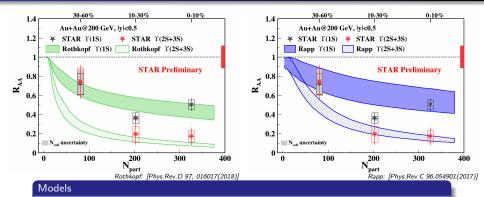
[Nucl.Phys.B (Proc.Suppl.) 214, 3-36(2011)]


- Modified feed-down pattern
- Regeneration negligible at RHIC!

Υ signal

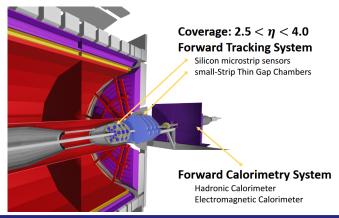
- Υ measured in both e^+e^- and $\mu^+\mu^-$
- Combined R_{AA} for better precision

Υ suppression - R_{AA}


CMS: [Phys.Lett.B 770, 357-379(2017)]

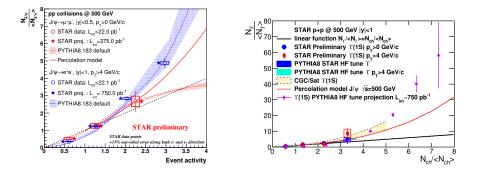
STAR vs. CMS

- Similar suppression for $\Upsilon(1S)$, despite higher medium temperature at the LHC
 - · Suppression of excited states contribution
 - Regeneration? Larger at LHC than at RHIC
 - CNM effects need better constraints
- Indication of smaller suppression for $\Upsilon(2S+3S)$ at RHIC than at LHC


L. Kosarzewski

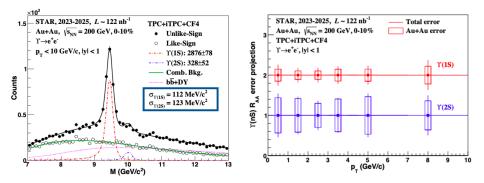
Υ : STAR vs. models

- Kroupaa, Rothkopf, Strickland
 - Lattice QCD-vetted potential for heavy quarks in hydrodynamic medium
 - No regeneration, no CNM effects
- De, He, Rapp
 - Quarkonium in-medium binding energy described by thermodynamic T-matrix calculations with internal energy potential (strongly bound scenario)
 - Includes both regeneration and CNM effects
- Both models agree with STAR $\Upsilon(1S)$ data
- Indication that Rothkopf's model underestimates the STAR $\varUpsilon(2S+3S)$ results for 30-60% centrality


Upgrades and plans for 2022+

Future plans for STAR

- iTPC already running improved momentum resolution
- Forward upgrade new detectors
- High integrated luminosity for precision quarkonium production studies
- And more!


J/ψ and Υ in p+p projections 2017+2022

Projections 2017+2022

- High precision measurement of J/ψ and Υ dependence on normalized N_{ch}
- Very high integrated luminosity $\mathcal{L}_{int} \sim 750 \ \mathrm{pb}^{-1}$ for BHT e and $\mathcal{L}_{int} \sim 375 \ \mathrm{pb}^{-1}$ for $\mu\mu$ triggers
- Possible to discriminate different models

ΥR_{AA} projections 2023+

Projections 2023+

- High precision measurement:
 - High integrated luminosity $\mathcal{L}_{int} \sim 122 \; \mathrm{nb}^{-1}$
 - Improved momentum resolution
 - Low material budget less background
- R_{AA} of $\Upsilon(1S)$ and $\Upsilon(2S)$ vs:
 - centrality, p_T

Summary

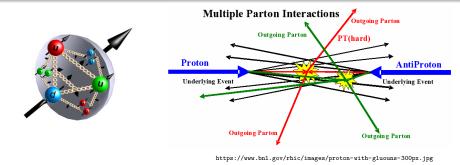
arY in p+p collisions at $\sqrt{s}=200~{ m GeV}$ and $\sqrt{s}=500~{ m GeV}$

- $\varUpsilon(1S)$ data reasonably described by CEM model, while overestimated by CGC+NRQCD
- Rapidity spectrum flatter at $\sqrt{s}=500~{
 m GeV}$ than at $\sqrt{s}=200~{
 m GeV}$
- Similar trends for J/ψ and Υ vs. $N_{ch}/< N_{ch}>$ at RHIC and LHC
 - $\bullet\,$ Qualitatively reproduced by the models may be discriminated with 2017+2022 datasets

\varUpsilon in p+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$

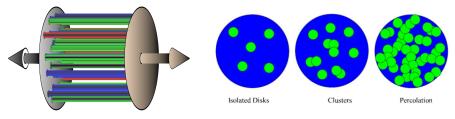
• Indication of $\Upsilon(1S+2S+3S)$ suppression $R_{pAu}|_{|y|<0.5} = 0.82 \pm 0.10(stat.)^{+0.08}_{-0.07}(syst.) \pm 0.10(glob.)$

Υ in Au+Au collisions at $\sqrt{s_{NN}}=200~{ m GeV}$


- Υ R_{AA} measured in dielectron and dimuon channels combined for better precision
- Similar suppression of $\Upsilon(1S)$ at RHIC and LHC
- Stronger suppression of $\Upsilon(2S+3S)$ than $\Upsilon(1S)$ in central collisions
 - Sequential suppression
 - Hint of smaller $\Upsilon(2S+3S)$ suppression at RHIC than at LHC
- $\Upsilon(1S)$, $\Upsilon(2S+3S)$ R_{AA} consistent with model calculations
- High precision $\Upsilon(1S)$, $\Upsilon(2S)$ R_{AA} measurements vs. p_T and centrality beyond 2023+

STAR presentations at ICHEP 2020

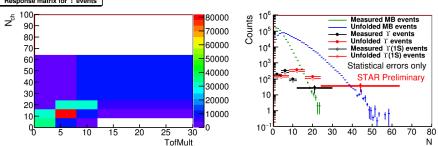
- 976. Measurements of J/ψ photoproduction in ultra-peripheral collisions at RHIC
 Jaroslav Adam, 29 July 2020 (Wednesday), 19:18
- 1052. Central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s}=200~{\rm GeV}$ with the STAR detector at RHIC
 - Rafal Sikora, 30 July 2020 (Thursday), 10:25
- 537. Measurements of open charm hadrons in Au+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$ by the STAR experiment
 - Lukáš Kramárik, 30 July 2020 (Thursday), 12:12
- \bullet 414. Production of D^\pm mesons in Au+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$ at the STAR experiment
 - Jan Vaněk(poster), 30 July 2020 (Thursday), 13:39
- 611. Geometry and Dynamics in Heavy-ion Collisions Seen by the Femtoscopy Method in the STAR experiment
 - Prof. Hanna Zbroszczyk, 31 July 2020 (Friday), 8:30
- 686. Study of the central exclusive production of $\pi^+\pi^- K^+K^-$ and $p\bar{p}$ pairs in proton-proton collisions at $\sqrt{s} = 510 \text{ GeV}$ with the STAR detector at RHIC
 - Tomáš Truhlář(poster), 31 July 2020 (Friday), 13:30


BACKUP

Multiple parton interactions (MPI)

http://www.desy.de/~jung/multiple-interactions/may06/mi-rick.gif

- Protons are complex objects consisting of constituent quarks, sea quarks and gluons.
- Multiple parton interactions (MPI) may happen in *p* + *p* collison implemented in PYTHIA.
 - Besides the main hard process, there may be additional hard and soft processes in MPI.
- As implemented in PYTHIA8, heavy quarks can also be produced during MPI.
- MPI together with initial- (ISR), final-state radiation (FSR) and beam remnants define the event activity, which can be characterized experimentally using the charged particle multiplicity.

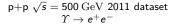


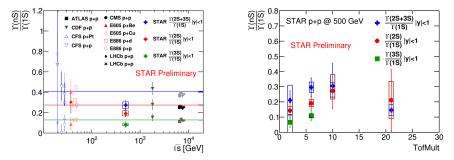
[Ann.Rev.Nucl.Part.Sci.60, 463-489(2010)] [Proc.of SPIE, 100313U(2016)]

- Models particle production originating from strings of color field formed in p + p collisions.
- Soft particle production dampened by interaction of overlapping strings.
- Predicts quadratic dependence of normalized yield for particles from hard processes vs. normalized charged particle multiplicity in high multiplicity events.

$$\frac{N_{hard}}{\langle N_{hard} \rangle} = \langle \rho \rangle \left(\frac{\frac{dN_{ch}}{d\eta}}{\langle \frac{dN_{ch}}{d\eta} \rangle} \right)^2 \text{ [Phys.Rev. C, 86, 034903 (2012)]}$$

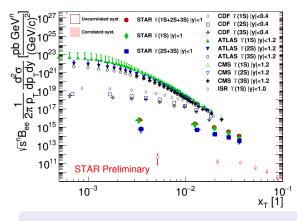
Multiplicity distribution via unfolding




Response matrix for T events

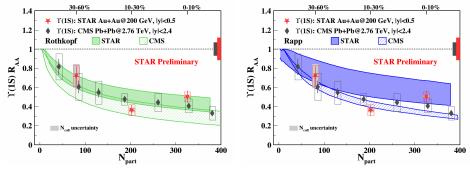
Unfolding method used for multiplicity dependent studies

- A response matrix is obtained using the PYTHIA8 event generator for both min-bias and Υ events taking into account reconstruction efficiency
- 2 The measured distributions are unfolded using their respective response matrices
- This procedure yields the unfolded (true) distribution 3
- 4 Similar procedure used for J/ψ
- Measured N_{ch} distribution obtained from p+p $\sqrt{s} = 500 \text{ GeV}$ 2009 data 6
- Measured distribution of Υ events obtained from p+p $\sqrt{s} = 500 \text{ GeV} 2011 \text{ data}$


Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

[[]W. Zha, et al, Phys.Rev.C 88,067901(2013)]

- Left plot: cross section ratios measured in 500 GeV p+p collisions are slightly below (within 2σ) world data average, shown as solid lines in the left plot.
- Right plot: Ratios vs. TofMult no strong multiplicity dependence observed.
- TofMult: number of tracks matched to TOF within $|\eta| < 1$, $p_T > 0.2 \, {\rm GeV/c}$ (uncorrected)

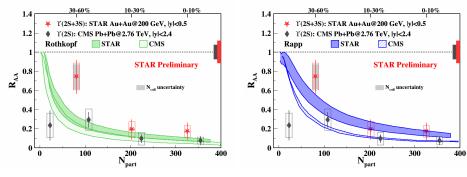

 $\begin{array}{l} {\rm STAR} \; p + p \; \sqrt{s} = 500 \; {\rm GeV} \\ {\rm ATLAS} \; p + p \; \sqrt{s} = 7 \; {\rm TeV} \\ {\rm [Phys, Rev. D87, 052004(2013)]} \\ {\rm CMS} \; p + p \; \sqrt{s} = 7 \; {\rm TeV} \\ {\rm [Phys. Lett. B} \; 749, 14-34(2015)] \\ {\rm CDF} \; p + \bar{p} \; \sqrt{s} = 1.8 \; {\rm TeV} \\ {\rm [Phys. Rev. Lett. \; 88, 161802(2002)] } \\ {\rm ISR} \; p + \bar{p} \; \sqrt{s} = 53, 63 \; {\rm GeV} \\ {\rm [Phys. Lett. B} \; 91, 481-4486(1980)] } \end{array}$

•
$$x_T = \frac{2p_T}{\sqrt{s}}, \sigma^{inv} \equiv E \frac{d^3\sigma}{d^3p} = \frac{F(x_T)}{p_T^{n(x_T,\sqrt{s})}} = \frac{F'(x_T)}{\sqrt{s}^{n(x_T,\sqrt{s})}}$$

[JHEP06,035(2010)]

- pQCD predicts that spectra of hard processes should follow x_T scaling check with n = 5.6 (number of partons taking active part in the process) obtained for J/ψ [*Phys.Rev.C* 80, 041902(2009)]
- No clear scaling observed, some indication for LHC data at high p_T

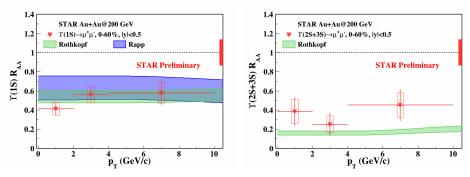
STAR and CMS $\Upsilon(1S)$ vs. models



[Phys.Rev.D 97,(2018)016017], [Phys.Rev.C 96,(2017)054901]

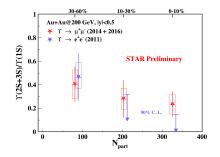
$\Upsilon(1S)$ vs. models

• Both models consistent with the data


STAR and CMS $\Upsilon(2S+3S)$ vs. models

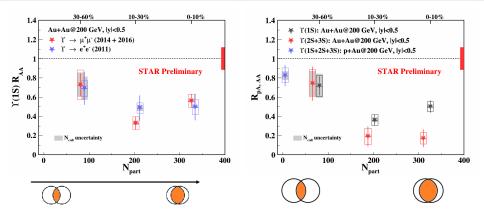
[Phys.Rev.D 97,016017(2018)], [Phys.Rev.C 96,054901(2017)]

$\Upsilon(2S+3S)$ vs. models

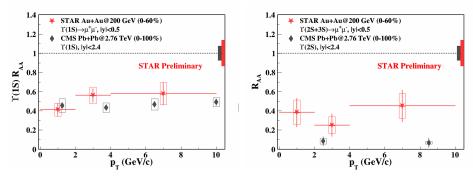

· Both models consistent with the data in central and semi-central collisions

[Phys.Rev.D 97,016017(2018)], [Phys.Rev.C 96,054901(2017)]

R_{AA} vs. p_T vs. models


- Both models consistent with the data
- Rothkopf's model slightly lower than $\Upsilon(2S+3S)$
- Flat vs. p_T

• Both channels consistent


ΥR_{AuAu} vs. N_{part}

R_{AuAu} measured by STAR

- Consistent results from dielectron and dimuon channels
- Both results combined in order to achieve better precision
- Similar level of suppression in peripheral collisions as in p + Au
- Stronger suppression of $\Upsilon(2S+3S)$ than $\Upsilon(1S)$ in central collisions

ΥR_{AA} vs. p_T

CMS: [Phys.Lett.B 770, 357-379(2017)]

Transverse momentum dependence

- Similar suppression for $\Upsilon(1S)$ at RHIC and LHC
- Indication of stronger suppression of high- $p_T \ \Upsilon(2S+3S)$ at LHC than at RHIC
- Both consistent with flat dependence vs. p_T