

Measurements of Υ production in p+p collisions at $\sqrt{s}=500~{\rm GeV}$ with the STAR experiment

Leszek Kosarzewski for the STAR collaboration

Warsaw University of Technology, Faculty of Physics

Polish Workshop on Relativistic Heavy-Ion Collisions, Wrocław 7.1.2018

The author has received financial support for the preparation of doctoral thesis from the National Science Center based on the decision number: DEC-2015/16/T/ST2/00524

Outline

- Introduction
 - Quarkonium
 - Probe the quark-gluon plasma
 - Production mechanism
- 2 STAR experiment
- Analysis
 - Dataset
 - Particle identification
 - Signal extraction
- Results
 - Integrated cross section
 - Differential cross section $(p_T, y \text{ dependences})$
 - \bullet Event activity dependence of \varUpsilon production
- 5 Summary

What is a quarkonium?

Quarkonium
$$\begin{cases} \mathbf{J} \mathbf{v} = \mathbf{c} \mathbf{c} \\ \mathbf{v} = \mathbf{b} \mathbf{b} \\ \mathbf{b} = \mathbf{b} \mathbf{0} \\ \mathbf{D} = \mathbf{c} \mathbf{0} \end{cases}$$

$$\begin{split} m_c &= 1.28 \pm 0.03 \, \mathrm{GeV/c^2} \\ m_b &= 4.18^{+0.04}_{-0.03} \, \mathrm{GeV/c^2} \\ m_{J/\psi} &= 3096.900 \pm 0.006 \, \mathrm{MeV/c^2} \\ m_{\Upsilon(1S)} &= 9460.30 \pm 0.26 \, \mathrm{MeV/c^2} \\ m_{\Upsilon(2S)} &= 10023.26 \pm 0.31 \, \mathrm{MeV/c^2} \\ m_{\Upsilon(3S)} &= 10355.2 \pm 0.5 \, \mathrm{MeV/c^2} \\ [\text{Chinese Physics C 2016 vol: 40(10) 100001}] \end{split}$$

Upsilon

- ullet Part of quarkonium family (Qar Q)
- \bullet Much heavier than $J/\psi \Rightarrow {\rm very\ rare}$
- \bullet At RHIC energy, heavy quarks are mainly produced in hard scatterings of partons at early stages of a collision ($\tau < 1~fm/c)$

Quarkonium in the quark-gluon plasma

- J/ψ suppression was suggested as signature of Quark-Gluon Plasma (QGP) formation [T. Matsui, H.Satz, Phys.Lett.B 178(4),416-422(1986)]
 - Recombination, feeddown and cold nuclear matter effects complicate the picture
- Similar to J/ψ , Υ mesons also melt in the QGP at high temperature due to the color-screening effect.
 - Less recombination for Υ than for J/ψ
- Each of the quarkonium states has a different binding energy ⇒ dissociates at a different temperature ⇒ sequential suppression [Phys.Lett B 637(1-2),75-80(2006)]
- To fully understand the quarkonium behavior in the QGP, it is important to understand its production mechanism in elementary p+p collisions.

Production mechanism

Production mechanism

- Still not well understood: hard scattering+non-perturbative hadronization
- Quarkonium measurements provide tests of production models, and thus help to understand QCD

Quarkonium production models

- ullet Color Singlet Qar Q produced directly in a color neutral state
- ullet Color Octet $Qar{Q}$ produced in a colored state. Gluon emissions are needed to neutralize color. This is described by long-distance matrix elements (LDMEs) which are assumed universal.
- \bullet Color Evaporation Model color irrelevant. Fixed fractions of $Q\bar{Q}$ pairs evolve into various quarkonium states.

[B. Trzeciak, HQPC 2015]

Multiple parton interactions (MPI)

https://www.bnl.gov/rhic/images/proton-with-gluouns-300px.jpg http://www.desy.de/~jung/multiple-interactions/may06/mi-rick.gif

- Protons are complex objects consisting of constituent quarks, sea quarks and gluons.
- Multiple parton interactions (MPI) may happen in p+p collison implemented in PYTHIA.
 - Besides the main hard process, there may be additional hard and soft processes in MPI.
- As implemented in PYTHIA8, heavy quarks can also be produced during MPI.
- MPI together with initial- (ISR), final-state radiation (FSR) and beam remnants
 define the event activity, which can be characterized experimentally using the
 charged particle multiplicity.

String Percolation Model

[Ann.Rev.Nucl.Part.Sci.60, 463-489(2010)] [Proceedings of SPIE, 100313U(2016)]

- Models particle production originating from strings of color field formed in p+p collisions.
- Soft particle production dampened by interaction of overlapping strings.
- Predicts quadratic dependence of normalized yield for particles from hard processes vs. normalized charged particle multiplicity in high multiplicity events.

$$\frac{N_{hard}}{\langle N_{hard} \rangle} = \langle \rho \rangle \left(\frac{\frac{dN_{ch}}{d\eta}}{\langle \frac{dN_{ch}}{d\eta} \rangle} \right)^2$$
 [Phys.Rev. C, 86, 034903 (2012)]

Multiplicity dependence of quarkonium production

- A strong rise of normalized yield vs. normalized event multiplicity was observed for J/ψ by ALICE and STAR [Phys.Lett.B 712,165–175(2012)],[Nucl.and Part.Phys. Proc., 276-278, pp.261–264(2016)]
- A strong rise for Υ as well at the LHC energy [JHEP04,103(2014)]
- Is there a similar effect for Υ at RHIC energy?

Solenoidal Tracker At RHIC: $-1 < \eta < 1, 0 < \phi < 2\pi$ Barrel ElectroMagnetic Calorimeter Magnet Time Of Flight Time Projection Chamber Beam Beam Counter Vertex Position Detector

Time Projection Chamber (TPC)

Particle identification via dE/dx and tracking.

Barrel Electromagnetic Calorimeter (BEMC)

Particle identification via E/p and shower shape. It also provides online High Tower trigger.

Time-Of-Flight detector (TOF)

Particle identification via time of flight. Fast detector used to reject pile-up tracks.

Υ decay reconstruction

$$\Upsilon(1S) \to e^+e^-, \ B_{ee}^{\Upsilon(1S)} = 2.38 \pm 0.11\%$$

$$\Upsilon(2S) \rightarrow e^{+}e^{-}, \; B_{ee}^{\Upsilon(2S)} = 1.91 \pm 0.16\%$$

 $\Upsilon(3S) o e^+ e^-, \; B_{ee}^{\Upsilon(3S)} = 2.18 \pm 0.20\%$

[Chinese Physics C 2016 vol: 40(10) 100001]

Dataset

Analyzed 160M 500 ${\rm GeV}$ p+p events triggered by High Tower trigger ($\mathcal{L}\approx 22~{\rm pb}^{-1}$), which contain a track with $E_T>4.6~{\rm GeV}$

Vertex selection

 $|V_z|$ < 40 cm

Particle identification

Trigger track:

Matched to the BEMC tower that fired the High Tower trigger

Partner track:

$$p>1\,{\rm GeV/c}$$

Electron identification:

$$-1.2 < n\sigma_e < 3$$

 $\frac{E_{TOW}}{E_{CLU}} > 0.5$
 $0.55 < \frac{E_{CLU}}{pc} < 1.45$
 $R_{SMD} < 0.028$

J. Phys.: Conf. Ser. 612 012022

Normalized dE/dx:
$$R_{SMD} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$
 $n\sigma_e = \ln\left(\frac{\frac{dE}{dE}|_{Measured}}{\frac{dE}{dE}|_{Expected}}\right)/\sigma$ Distance between a track project BEMC SMD and the center of

Distance between a track projection on BEMC SMD and the center of the associated BEMC cluster

Signal extraction

Systematic uncertainties estimated by:

- Including difference to the fit method (signal from bin-counting vs. fit)
- ullet Parameter B is fixed to B=30 and varied by ± 15
- $\frac{\Upsilon(2S)}{\Upsilon(2S)}$ set free vs. fixed

- Simultaneous fit of like-sign and unlike-sign distributions using RooFit
- Υ signal shapes modeled by 3 Crystal-Ball functions
- Fit to Unlike-sign (red) distribution consists of:
 - 3 Crystal-Ball functions (15,25,35 states)
 - $b\bar{b}+DY$ correlated background (black): $f_{b\bar{b}}=N\frac{m^A}{(1+\frac{m}{D})^C}$
 - Combinatorial backround (blue) an exponential function simultaneously fitted to like-sign distribution : $f_{CB} = N \cdot exp(\frac{-m}{Exp1})$

[Nucl.Phys.A 967, pp.600-603(2017)]


```
STAR
[Nucl.Phys.A 967,600-603(2017)]
[Phys.Lett.B 735.127-137(2014)]
CDF
[Phys.Rev.Lett. 88.161802(2002)]
CMS
[Phys.Rev.D 83.112004(2010)]
CES
[Phys.Rev.Lett.
39.1240-1242(1977)]
[Phys.Rev.Lett. 41,684-687(1978)]
[Phys.Rev.Lett. 42.486-489(1979)]
[Phys.Rev.Lett.
55.1962-1964(1985)]
F605
[Phys.Rev.D 43.2815-2835(1991)]
[Phys.Rev.D 39,3516(1989)]
CCOR
[Phys.Lett.B 87.398-402(1979)]
L. Camilleri, T.B.W. Kirk, H.D.I.
Abarbanel (Eds.)
F866
[Phys.Rev.Lett. 100,062301(2008)]
```

[Phys.Lett.B 91,481-486(1980)]

- $B_{ee} \frac{d\sigma}{dy}|_{|y|<0.5} = 186 \pm 14(stat) \pm 33(syst) \text{ pb in p+p collisions at } \sqrt{s} = 500 \text{ GeV}$
- Consistent with the Color Evaporation Model calculation [Phys.Rep. 462, pp.125–175(2008)]

- ullet Color Evaporation Model (CEM) calculation for inclusive $\Upsilon(1S)$ [Phys.Rev. C92 (2015) 034909]
 - · Agree with data reasonably well
- Non-relativistic Quantum Chromodynamics coupled with the Color-Glass Condensate formalism (CGC+NRQCD) for direct Υ [PRD 94, 014028 (2016)] [PRL 113, 192301 (2014)]
 - Υ(1S): model calculation is above the data points. Caveat: additional corrections are needed at low p_T according to authors.

ATLAS [Phys.Rev.D 87,052004(2013)] CMS [Phys.Lett.B 749,14-34(2015)] CDF [Phys.Rev.Lett. 88,161802(2002)] ISR [Phys.Lett.B 91,481-486(1980)]

- $x_T = \frac{2p_T}{\sqrt{s}}$, $\sigma^{inv} \equiv E \frac{d^3\sigma}{d^3p} = \frac{F(x_T)}{p_T^{n(x_T,\sqrt{s})}} = \frac{F'(x_T)}{\sqrt{s}^{n(x_T,\sqrt{s})}}$ [JHEP06,035(2010)]
- pQCD predicts that spectra of hard processes should follow x_T scaling check with n=5.6 (number of partons taking active part in the process) obtained for J/ψ [Phys.Rev.C 80, 041902(2009)]
- No clear scaling observed

- STAR data slightly narrower than CEM model at $\sqrt{s}=200~{\rm GeV}$
- Flatter rapidity spectrum at $\sqrt{s}=500~{
 m GeV}$ compared to $\sqrt{s}=200~{
 m GeV}$
 - \bullet CEM model (inclusive) consistent with the measurement for $\varUpsilon(1S)$ [Phys.Rev. C92 (2015) 034909]
 - CGC+NRQCD (direct) predictions are above the data [PRD 94, 014028 (2016)],[PRL 113, 192301 (2014)]

Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

[Phys.Rev.C 88,067901(2013)]

- TofMult: number of tracks matched to TOF with $|\eta| < 1$, $p_T > 0.2 \, {\rm GeV/c}$
- Boxes correspond to uncorrelated systematic uncertainties (correlated uncertainties cancel out)
- Cross section ratios measured in 500 ${\rm GeV}$ p+p collisions are slightly below (within 2σ) world data average, shown as solid lines in the left plot.
- Right plot: No strong multiplicity dependence observed.

Unfolding method used for multiplicity dependent studies

- f a A response matrix is obtained using the PYTHIA8 event generator for both min-bias and Υ events taking into account reconstruction efficiency
- 2 The measured distributions are unfolded with their respective response matrices
- This procedure yields the unfolded (true) distribution

- ullet Normalized Υ yield vs. normalized multiplicity (a measure of event activity)
- STAR results for inclusive $\Upsilon(1S+2S+3S)$ and $\Upsilon(1S)$ as well as high- p_T $\Upsilon(1S)$ with $p_T>4~{\rm GeV/c}$
- Boxes correspond to systematic uncertainties both for $\frac{N_{\Upsilon}}{\langle N_{\Upsilon} \rangle}$ and $\frac{N_{ch}}{\langle N_{ch} \rangle}$
- Data consistent with a linear rise, with a hint for stronger-than-linear rise for $\Upsilon(1S)$ above $p_T>4~{\rm GeV/c}$

• A similar trend observed at RHIC and LHC for Υ and J/ψ [JHEP04,103(2014)],[Nucl.and Part.Phys. Proc., 276-278, pp.261–264(2016)],[Phys.Lett.B 712,165–175(2012)]

- Consistent with models and quadratic fit $f(x) = ax^2$ taking into account statistical errors only
- ullet Hints of interaction between strings of color field or Υ production in MPI

- Presented first measurements of Υ production in p+p collisions at $\sqrt{s} = 500~{\rm GeV}.$
- The $\Upsilon(1S)$ spectrum can be reasonably described by CEM calculations.
- Flatter rapidity distribution for Υ at $\sqrt{s} = 500 \, \mathrm{GeV}$ than at $\sqrt{s} = 200 \, \mathrm{GeV}$.
- Presented $\frac{\Upsilon(nS)}{\Upsilon(1S)}$ vs. multiplicity no strong dependence.
 - Ratios slightly lower than world data.
- ullet Studied the dependence of Υ production on event activity.
 - ullet A similar trend observed for J/ψ and Υ at RHIC and LHC.
 - Predictions from PYTHIA8 and Percolation model can qualitatively describe the trend observed in data.