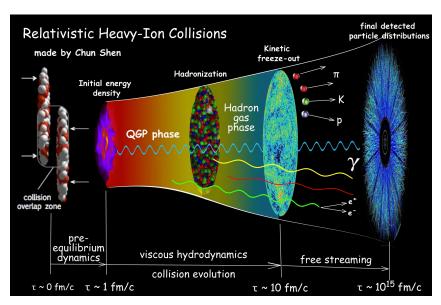
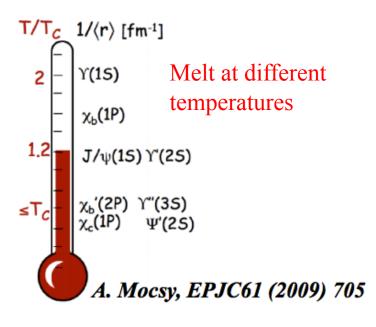


Y Production in Heavy-Ion Collisions from the STAR Experiment


Zaochen Ye for the STAR Collaboration University of Illinois at Chicago

Outline

- > Quarkonia as a probe of QGP
- > STAR experiment
- > Y measurements at STAR
 - □ 2010 Au+Au and 2012 U+U data via di-electron channel
 - □ 2014 Au+Au data via di-muon channel (new)
 - □ 2015 p+p, p+Au, 2011 + 2014 Au+Au data via di-electron channel (on-going)
- > Summary and Outlook


Quarkonia as the thermometer of QGP

QGP can be created and studied in heavy-ion collisions

Quarkonium could melt in the QGP due to the color screening effect ----- T.Matsui and H. Satz(1986)

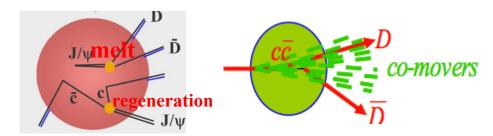
QGP Thermometer

Y is a cleaner probe for QGP

Things are never easy!!

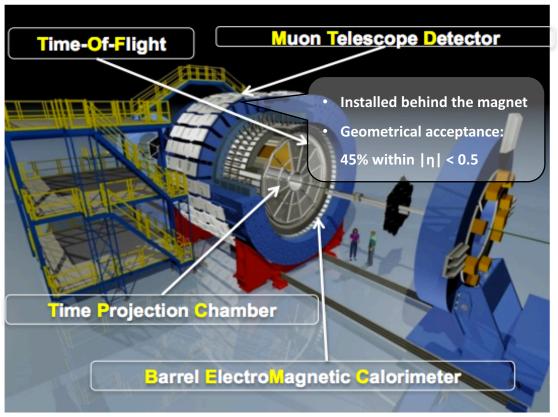
- Complicated contributions to quarkonium suppresion:
 - Color-screening
 - Recombination
 - Nuclear PDF
 - Co-mover absorption
 - Cronin effect
 - Feed-down contributions
 - ...

- Advantages of bottomonia over charmonia at RHIC:
 - Regeneration is negligible

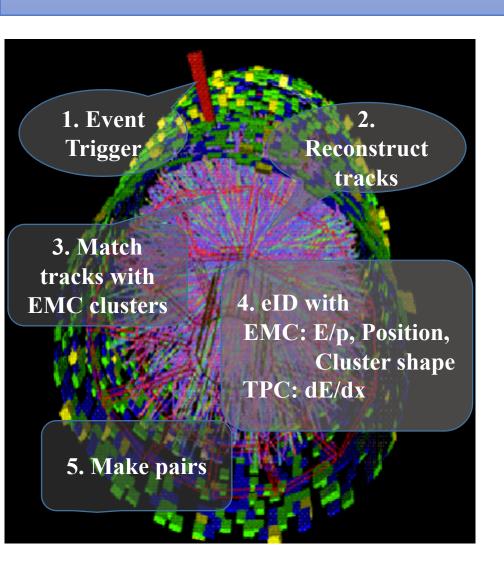

A. Emerick, X. Zhao & R. Rapp Eur. Phys. J. A48 (2012) 72

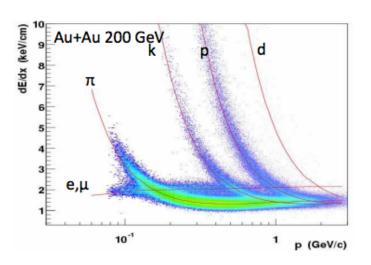
Co-mover absorption is negligible

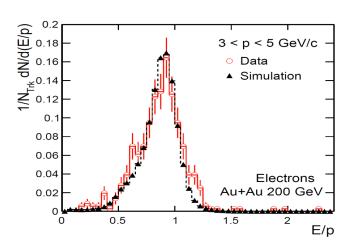
Lin & Ko, PLB 503 104 (2001)


However:

- Feed-down from excited states still exists
- Cold nuclear matter effects
- Lower production rates

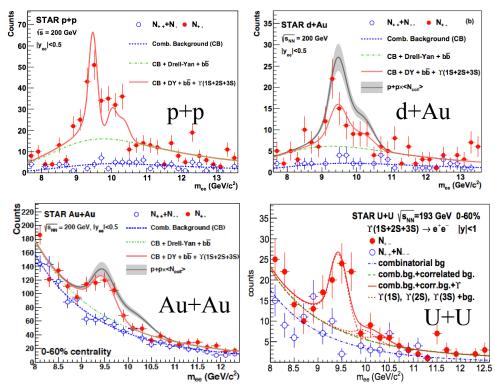

The Solenoidal Tracker At RHIC (STAR)

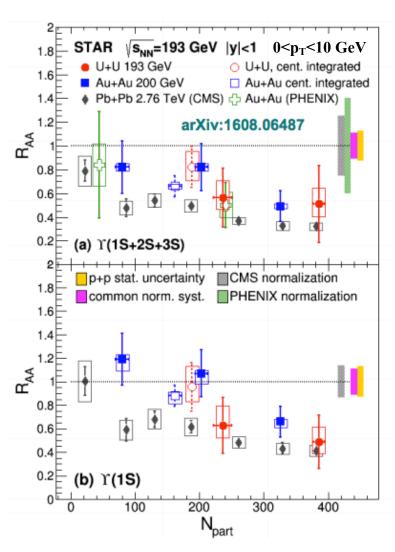

• Mid-rapidity detector: $|\eta| < 1$, $0 < \varphi < 2\pi$



- ➤ TPC: precisely measure momentum and energy loss
- > TOF: measure time-of-flight
- BEMC: trigger on and identify electrons
- > MTD (|η|<0.5): trigger on and identify muons
 - Installed 63% in 2013 and 100% in 2014 behind magnet
 - Precise timing
 measurement (σ~100 ps)
 - Dimuon trigger for quarkonia

Y reconstruction via di-electron channel



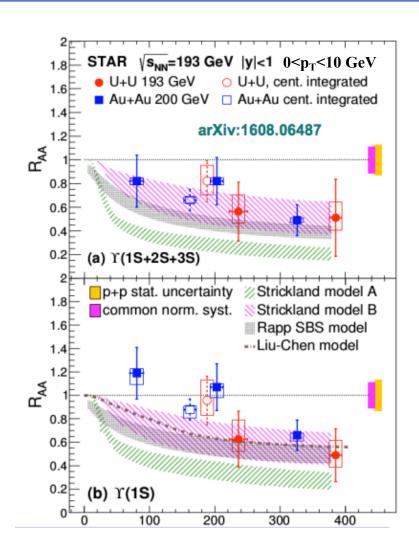

Y measurements at STAR

Y has been measured in di-electron channel for different collision systems at STAR:

- pQCD benchmark and reference:
 - \Box p+p at $\sqrt{s} = 200 \, GeV$
 - Luminosity = 20.0 pb⁻¹
 PLB **735** (2014) 127
- Cold nuclear matter effects:
 - - Luminosity = 28.2 nb⁻¹
 PLB **735** (2014) 127
- Hot nuclear mater effects:
 - Au+Au at $\sqrt{s_{NN}} = 200 \ GeV$ PLB 735 (2014) 127
 - $U+U \text{ at } \sqrt{s_{NN}} = 193 \text{ GeV}$ arXiv:1608.06487

Y RAA in Au+Au and U+U collisions

$$R_{AA} = \frac{1}{\frac{\sigma_{AA}}{\sigma_{pp}}} \times \frac{1}{\langle N_{\text{coll}} \rangle} \times \frac{B_{ee} \times \left(\frac{d\sigma_{AA}}{dy}\right)^{\Upsilon}}{B_{ee} \times \left(\frac{d\sigma_{pp}}{dy}\right)^{\Upsilon}}$$


 γ in peripheral collisions:

• No significant suppression

Y in central collisions:

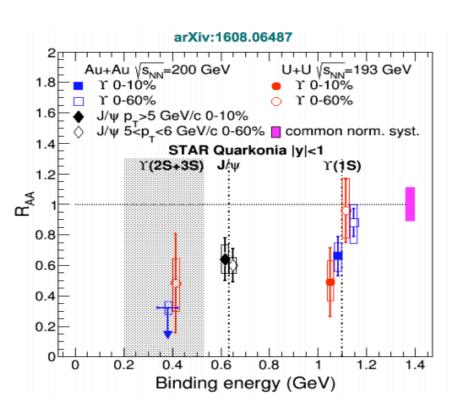
- In Au+Au: Suppression
- In U+U:
 - Extend the N_{part}
 - Indicative suppression
 - consistent with Au+Au within large uncertainty

Compare with model predictions

Models without CNM effects:

- Strickland, Bazov: [Nucl.Phys.A 879,25(2012)]
 - 428 < T < 443 MeV
 - Hydro-dynamically expanding fire ball
 - Feed down
 - Model A: free energy as heavy quark potential
 - Model B: internal energy as heavy quark potential
- Liu, Chen, Xu, Zhuang [Phys.Lett.B 697, 32(2011)]
 - T = 340 MeV
 - Feed down included
 - Only excited states could dissociate

Model with CNM effects:


• Emerick, Zhao, Rapp SBS model:

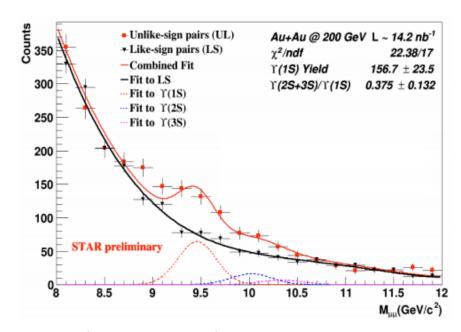
[Eur.Phys.J A48, 72 (2012)]

- T = 330 MeV
- Modified nPDFs
- Absorption : cross-section $\sigma_{\text{(abs)}}$ 0-3 mb

The internal-energy-based models generally describe the data.

Quarkonium suppression in Au+Au and U+U

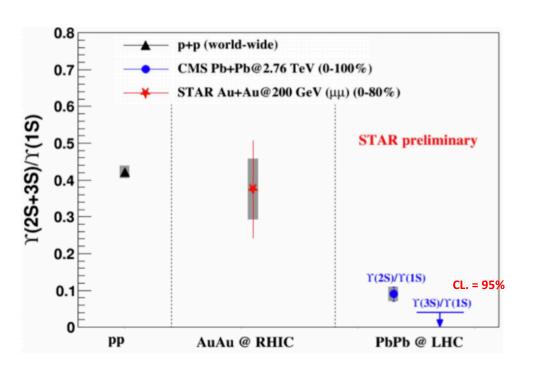
 $\Upsilon(1S)$ suppression is similar to high $p_T J/\psi$ in most central collisions


Excited states:

A hint of suppression

More precise measurement is needed!!

Y in Au+Au from di-muon channel

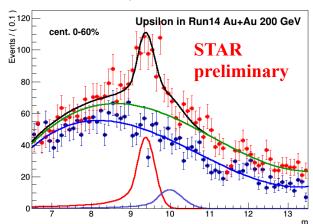

- Y is reconstructed for the **first time** via di-muon channel in Au+Au at 200 GeV at STAR.
- Better separation of different Y states.
 - Muons suffer very little
 Bremsstrahlung radiation

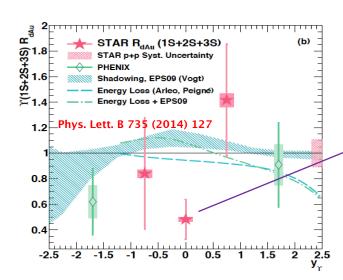
Y yield extraction:

- Signals: $\Upsilon(1S) + \Upsilon(2S) + \Upsilon(3S)$ Gaussian line shapes from simulation
- Background:
 - Combinatorial background: 5th pol
 - Residual background: Exponential line shape from simulation

Ratio of excited Y states to the ground state

Ratio of Y(2S+3S)/Y(1S) at RHIC may have less suppression than that at LHC?


World-wide p+p: PRC 88 (2013) 067901


CMS: PRL 109 (2012) 222301 CMS: JHEP 04 (2014) 103

Data taken in 2016 will double the statistics.

On-going analysis of Y measurements

Optimization of track quality cuts and the large data taken in 2011 and 2014 may allow the extraction of excited Υ states via the dielectron channel.

• Run10, Run11 and Run14 results will be combined.

The p+p data recorded in 2015 will have a factor of \sim 5 more Υ than that in 2009 p+p data:

- \Box Luminosity = 120 pb⁻¹
- ☐ A better reference

which is **beyond** the expectation of all existing models.

The p+Au data recorded in 2015 will have a factor of \sim 6 more Υ than that in 2008 d+Au data:

- \Box Luminosity = 407 nb⁻¹
- ☐ Cold nuclear matter effects

Summary and Outlook

- > γ production in central Au+Au and U+U collisions shows an indicative suppression
- > The internal-energy-based models generally describe RHIC data
- \triangleright Ratio of $\Upsilon(2S+3S)/\Upsilon(1S)$ via the di-muon channel has a **hint** that excited states suffer **less dissociation** at RHIC than at LHC
- > Y measurements from Run15 p+p and p+Au data will provide better p+p reference and allow better study of the CNM effects
- > γ suppression in Au+Au collisions with better precision will improve the understanding of the **hot medium** effect:
 - 1) Run16: di-muon channel
 - 2) Run10+Run11+Run14: di-electron channel

