

Tsinghua University

.....

Baryon Stopping, Charged and Strange Particle Distributions in Al+Au Collisions at $\sqrt{s_{NN}} = 4.9$ GeV

th Asian Triangle Heavy-Ion Conference (ATHIC 2018)

November 3-6, 2018, University of Science and Technology of China, Hefei, AnHui, China

Outlines

- ✓ BES-I and STAR Fixed-Target Program
- ✓ Overview of the STAR Detector
- ✓ STAR Fixed-Target Geometry
- $\checkmark \pi^-$, Proton, K_S^0 and Λ Production from Al+Au Collisions at $\sqrt{s_{NN}} = 4.9 \text{ GeV}$ \checkmark Transverse Mass Spectra
 - ✓ dN/dy Distributions and Comparison with E802 Experiment at AGS ✓ Meson Discussion
 - ✓ Baryon Discussion
- ✓ Future Upgrades and Fixed-Target Program
- ✓ Summary

BES-I and STAR Fixed-Target Program

Goals of BES-I

- ✓ Study the onset of de-confinement and phase boundary.
- \checkmark Search for the QCD critical point.
- \checkmark Turn-off of QGP signals.
- ✓ Find evidence of the possible first-order phase transition.

The Solenoidal Tracker At RHIC (STAR)

STAR Fixed-Target Geometry

STAR

 \checkmark The Fixed Target was installed inside the vacuum pipe at z = 211 cm

 \checkmark Gold foil is 1 mm thick with about a 4% interaction probability

 \checkmark 3.4 M Al+Au events with top 30% centrality trigger

- ✓ The centrality variable is the number of tracks that pass our basic track QA cuts.
- ✓ 3.4 M Al+Au events collected with the top 30% centrality.
- ✓ Events with a multiplicity greater than 125, were excluded from all analyses since this region of multiplicity is dominated by pile-up events.
 ✓ It is not a beam pipe study.

π^- , Proton, K_S^0 and Λ Production

STAR

 $\checkmark \pi^{-}$ spectra for different rapidity ranges and different centralities scaled by the factor of $3^{\pm n}$. n=0 for mid rapidity

 $\checkmark \pi^-$ data extrapolated to low and high m_T with the double Bose-Einstein fitting function.

M. Usman Ashraf ATHIC-2018

Proton Spectra

- ✓ Proton spectra for different
 rapidity bins and different
 centralities scaled by the factor
 of 5^{±n}.
- ✓ Proton data is extrapolated to low $m_T - m_0$ with the thermal fitting function.

 ✓ Systematic uncertainties are included.

K⁰_S Spectra

 $\checkmark P_T$ range upto 1.5 GeV/c

✓ K_S^0 spectra for different rapidity ranges and different centralities scaled by the factor of 10.

✓ K_S^0 data is extrapolated to low and high P_T with the exponential fitting function.

 ✓ Systematic uncertainties are included.

A Spectra

 \checkmark **P**_T range upto 2.5 GeV/c

✓ A spectra for different
 rapidity ranges and different
 centralities scaled by the
 factor of 10.

 Λ data are extrapolated to low and high P_T with the Boltzmann fitting function.

 ✓ Systematic uncertainties are included.

✓ Stars are the values y_{lab}/y_{beam} from table

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

$$p_z = \langle N_{part} \rangle^{Al} p_z^{beam}$$

$$E = \langle N_{part} \rangle^{Al} E^{beam} + \langle N_{part} \rangle^{Au} m_{nucleon}$$

 $m_{nucleon} = 931.5 \mathrm{MeV}$ $p_z^{beam} = 11.69 \text{GeV}$ $E^{beam} = 11.73 GeV$

- $\checkmark \pi^{-}$ are produced by a source travelling with the rapidity of the interaction zone.
- \checkmark The peak of π^{-} is shifted towards the interaction zone rapidity

Centrality (%)	Y_{lab}/y_{beam}	<n<sub>part></n<sub>	<n<sub>part>^{Al}</n<sub>	<n<sub>part>^{Au}</n<sub>
0-5	0.354	100.3	26.51	73.78
5-10	0.371	89.28	25.89	63.39
10-15	0.389	80.01	24.92	55.09
15-20	0.400	70.20	23.43	46.77
20-25	0.412	61.16	21.59	39.57
25-30	0.422	53.13	19.62	33.51

M. Usman Ashraf ATHIC-2018

Meson dN/dy Distributions

 $\checkmark \pi^-$ and K^0_S peak are shifted towards the interaction zone rapidity. \checkmark K_S^0 dN/dy distributions are scaled for better visualization. ✓ Significant difference, in the π^- dN/dy with AGS-E802 experiment, however when scaled, shapes are the same.

✓ 0-5% π^- and K_S^0 has the Systematic uncertainties.

y_{lab}^{/y}_{beam}M. Usman Ashraf ATHIC-2018 13

Baryon dN/dy Distributions

✓ Definition of Stopping is: $\delta_{y} = y_{beam} - y_{peak}$ \checkmark For Au-Spectators $y_{beam} = 0$, and $\delta_{v} = y_{peak}$ ✓ For Au-Participants $y_{peak}/y_{beam} = 0.32$ converting this back to the lab rapidity, $\delta_{v} = 0.32 * 3.24 = 1.03$ (Proton) $\delta_{v} = 0.33 * 3.24 = 1.06 (\Lambda)$

 \checkmark For Al-Participants $y_{peak}/y_{beam} =$ 0.6886

 $\delta_{v} = y_{beam} - y_{peak}$ $\delta_{v} = 1 - 0.6886 = 0.3114$ converting this back to lab rapidity,

 $\delta_{v} = 0.3114 * 3.24 = 1.01$

✓ Systematic uncertainty, added up in quadrature with statistical Error for protons and A.

✓ No systematic error for AGS-E802 data points.

Baryon dN/dy Distributions

- ✓ 0-5% proton has systematic uncertainty, added up in quadrature with statistical error.
- ✓ Double Gaussian is used to fit Λ and proton dN/dy distributions.
- ✓ For protons Au-Participant peak is observed around 0.329
- ✓ For Λ , Au-Participant peak is observed around 0.314
- \checkmark A peak is about 0.1 units less than for protons.
- \checkmark 0-5% Λ dN/dy distributions has systematic uncertainty.

Summary Plot

- ✓ The trend of the peaks of the K_S^0 and π^- dN/dy distributions are same, but the peak of K_S^0 is shifted toward the target by roughly 0.2 unity of rapidity.
- ✓ The proton dN/dy show both target and the interaction zone components. The Interaction zone component was used to estimate the stopping " δy " of the gold nucleons to be about 1.0
- ✓ The peak of the Λ dN/dy is consistent to the protons.

The STAR Upgrades and the FXT program

Star Note 0644 : Technical Design Report for the iTPC Upgrade

https://arxiv.org/pdf/1609.05102.pdf

Star Note 0666 : An Event Plane Detector for STAR

M. Usman Ashraf ATHIC-2018

Summary

- \checkmark Centroids of the high temperature component of the π^- yield is consistent with the interaction zone rapidity.
- \checkmark The peak of the K_S^0 dN/dy distributions follows π^- , but is shifted toward the target by roughly 0.2 unit of rapidity.
- ✓ The proton dN/dy distributions show both target and the interaction zone components.
 The Interaction zone component was used to estimate the stopping "δy" of the gold nucleons to be about 1.0 units.
- ✓ The peak of the Λ dN/dy is consistent to the protons.
- ✓ FXT program proposed during RHIC BES-II will extend the energy down to $\sqrt{s_{NN}} = 3.0$ GeV (μ_B =720 MeV).
- \checkmark iTPC, eTOF and EPD upgrades will allow more comprehensive and refined measurements.

Thank You!