

Proton Spin Distribution

- Protons have intrinsic spin: ħ/2
- Protons composed of quarks and gluons, which contribute to its spin
- Quark spin responsible for ~30% of proton spin
- Gluon contribution not as well constrained, particularly gluons with a small fraction of the proton's momentum (low x, e.g. x < 0.05)

(Above) A model of the proton

- A₁₁ is proportional to the gluon's contribution to the proton spin
- Spin is aligned when spin and momentum vectors are aligned; Spin is anti-aligned when the vectors are opposed.

Asymmetry equation where σ^{++} is the pion or di-jet production cross section for collisions with both protons aligned

2013 EEMC π^0 Analysis

- Measure π^{0} 's in the EEMC (1 < η < 2) to probe relatively low momentum (x) gluons
- Using dataset from 2013 (integrated luminosity 300 pb⁻¹), ~3 times larger than 2012 dataset (82 pb⁻¹)
- Analysis proceeds through 3 parts
- Part 1: Calibrated energies for different parts of the EEMC
- Part 2: Strip clustering and other elements of photon reconstruction
- Part 3: Final photons and π^{0} 's
- Analyzed 105 runs (a small fraction of the 2013 dataset), including some for comparison with work from another student last summer
- Few small discrepancies (i.e. slightly different entry and RMS values) noted in the comparison, under investigation.
- Each run had a mass peak in the 135 MeV/c² range!

Mass distribution of Run 14082034. Peak is in the 135 MeV/c^2 range, which is the invariant mass of a neutral pion.

Poster presented at the American Physical Society (APS) Division of Nuclear Physics (DNP) Conference Experience for Undergraduates (CEU) on October 26, 201

Gluon Contribution to Proton Spin and the Connection to Forward Calorimetry at STAR

Miya Bailey (Valparaiso University) for the STAR Collaboration

Mentors: Professor Adam Gibson and Professor Shirvel Stanislaus

Investigation of **Spin at STAR**

- Solenoidal Tracker at Relativistic Heavy Ion Collider
- RHIC the only collider in the world capable of producing spin-polarized collisions

(Left) Aerial view of RHIC at Brookhaven National _aboratory in

Forward Meson Spectrometer Decommissioning

- The FMS (2.5 < η < 4.0) was a STAR detector used to measure forward π^{0} 's to probe even lower *x* gluons
- Decommissioned for replacement by a Forward Calorimeter System (FCS) • FMS made of 1,264 lead glass blocks of two different sizes \circ 476 3.8 x 3.8 x 45 cm³ smaller blocks
- \circ 788 5.8 x 5.8 x 60 cm³ larger blocks.
- Each lead glass block attached to one photomultiplier tube (PMT), and two cables
- VU physics research team traveled to BNL to dismantle FMS (7/8/18-7/28/18)
- Removed all cables, removed PMTs from fragile mounts and casings connected to the lead glass, and unstacked each lead glass block
- Carefully stacked and packed lead glass blocks into crates for safe storage until ready for use in other experiments

Above) Team that deconstructed the FMS, from VU, Abilene Christian University, Yale, and UC-Riverside

Left)The FMS with all of the photomultiplier tubes removed, looking west from the interaction

(Right) Side view of the pre-deconstructed FMS

EEMC and **FMS**

- Endcap Electromagnetic Calorimeter and Forward Meson Spectrometer detect the number of π^{0} 's from spin-polarized collisions • Allow us to calculate an asymmetry which
- relates to the gluon's contribution to proton spin

Proposed Forward Calorimeter System Upgrade

- Note 648, 2017)

(**Below**) Forward di-jet A₁₁ with projected statistical and systematic uncertainties and model calculations.

π^0 Reconstruction

- Jets of particles, including π^{0} 's, are produced from proton collisions
- EEMC and FMS detect the photons from π^0 decays

• Proposed for the years beyond 2020, covering $2.5 < \eta < 4.0$ • Refurbished portion of the PHENIX EMCAL (Pb-scintillator) and new HCAL (Fe-scintillator), with same newly designed readout • Will allow forward jet measurements (not just π^{0} 's), as in the di-jet measurement illustrated below (from "A polarized p+p and p+A program for the next years", STAR Note 605, 2014, and "The STAR Forward Calorimeter System and Forward Tracking System", STAR

(Left) A diagram of the proposed FCS upgrade in its home, the previous position of the FMS.

(**Above**) x-coverage for di-jet configurations involving one jet in the EEMC and one in the FCS. This configuration (and FCS/FCS) probes x values as low as 10⁻³